Toughening Hydrogels with Fibrillar Connected Double Networks

Author:

Fang Yu‐Huang1,Liang Chen1,Liljeström Ville2,Lv Zhong‐Peng1,Ikkala Olli1ORCID,Zhang Hang1ORCID

Affiliation:

1. Department of Applied Physics Aalto University P.O. Box 15100 Espoo 02150 Finland

2. Nanomicroscopy Center, OtaNano Aalto University P.O. Box 15100 Espoo 02150 Finland

Abstract

AbstractBiological tissues, such as tendons or cartilage, possess high strength and toughness with very low plastic deformations. In contrast, current strategies to prepare tough hydrogels commonly utilize energy dissipation mechanisms based on physical bonds that lead to irreversible large plastic deformations, thus limiting their load‐bearing applications. This article reports a strategy to toughen hydrogels using fibrillar connected double networks (fc‐DN), which consist of two distinct but chemically interconnected polymer networks, that is, a polyacrylamide network and an acrylated agarose fibril network. The fc‐DN design allows efficient stress transfer between the two networks and high fibril alignment during deformation, both contributing to high strength and toughness, while the chemical crosslinking ensures low plastic deformations after undergoing high strains. The mechanical properties of the fc‐DN network can be readily tuned to reach an ultimate tensile strength of 8 MPa and a toughness of above 55 MJ m−3, which is 3 and 3.5 times more than that of fibrillar double network hydrogels without chemical connections, respectively. The application potential of the fc‐DN hydrogel is demonstrated as load‐bearing damping material for a jointed robotic lander. The fc‐DN design provides a new toughening mechanism for hydrogels that can be used for soft robotics or bioelectronic applications.

Funder

China Scholarship Council

Diamond Light Source

H2020 European Research Council

Academy of Finland

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3