Recent Advances and Opportunities of Eco‐Friendly Ternary Copper Halides: A New Superstar in Optoelectronic Applications

Author:

Ma Zhuangzhuang1,Ji Xinzhen1,Lin Shuailing1,Chen Xu1,Wu Di1,Li Xinjian1,Zhang Yu2,Shan Chongxin1,Shi Zhifeng1,Fang Xiaosheng3ORCID

Affiliation:

1. Key Laboratory of Materials Physics of Ministry of Education School of Physics and Microelectronics Zhengzhou University Daxue Road 75 Zhengzhou 450052 P. R. China

2. State Key Laboratory on Integrated Optoelectronics College of Electronic Science and Engineering Jilin University Changchun 130012 P. R. China

3. Department of Materials Science Institute of Optoelectronics State Key Laboratory of Molecular Engineering of Polymers Fudan University Shanghai 200438 P. R. China

Abstract

AbstractRecently, the newly‐emerging lead‐free metal‐halide materials with less toxicity and superior optoelectronic properties have received wide attention as the safer and potentially more robust alternatives to lead‐based perovskite counterparts. Among them, ternary copper halides (TCHs) have become a vital group due to their unique features, including abundant structural diversity, ease of synthesis, unprecedented optoelectronic properties, high abundance, and low cost. Although the recent efforts in this field have made certain progresses, some scientific and technological issues still remain unresolved. Herein, a comprehensive and up‐to‐date overview of recent progress on the fundamental characteristics of TCH materials and their versatile applications is presented, which contains topics such as: i) crystal and electronic structure features and synthesis strategies; ii) mechanisms of self‐trapped excitons, luminescence regulation, and environmental stability; and iii) their burgeoning optoelectronic devices of phosphor‐converted white light‐emitting diodes (WLEDs), electroluminescent LEDs, anti‐counterfeiting, X‐ray scintillators, photodetectors, sensors, and memristors. Finally, the current challenges together with future perspectives on the development of TCH materials and applications are also critically described, which is considered to be critical for accelerating the commercialization of these rapidly evolving technologies.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3