Achieving Exceptional Volumetric Desalination Capacity Using Compact MoS2 Nanolaminates

Author:

Ying Ting1,Xiong Yu1,Peng Huarong1,Yang Ruijie1,Mei Liang1,Zhang Zhen1,Zheng Weikang1,Yan Ruixin1,Zhang Yue1,Hu Honglu1,Ma Chen2,Chen Ye2,Xu Xingtao3,Yang Juan4,Voiry Damien5,Tang Chuyang Y.6,Fan Jun1ORCID,Zeng Zhiyuan17ORCID

Affiliation:

1. Department of Materials Science and Engineering and State Key Laboratory of Marine Pollution City University of Hong Kong 83 Tat Chee Avenue Kowloon Hong Kong SAR 999077 P. R. China

2. Department of Chemistry Chinese University of Hong Kong Hong Kong SAR 999077 China

3. Marine Science and Technology College Zhejiang Ocean University Zhoushan Zhejiang 316022 China

4. School of Chemical Engineering and Technology Xi'an Jiaotong University Xi'an 710049 China

5. Institut Européen des Membranes IEM, UMR 5635 Université Montpellier ENSCM, CNRS Montpellier 34000 France

6. Department of Civil Engineering University of Hong Kong Hong Kong SAR 999077 China

7. Shenzhen Research Institute City University of Hong Kong Shenzhen 518057 P. R. China

Abstract

AbstractCapacitive deionization (CDI) has emerged as a promising technology for freshwater recovery from low‐salinity brackish water. It is still inapplicable in specific scenarios (e.g., households, islands, or offshore platforms) due to too low volumetric adsorption capacities. In this study, a high‐density semi‐metallic molybdenum disulfide (1Tʹ‐MoS2) electrode with compact architecture obtained by restacking of exfoliated nanosheets, which achieve high capacitance up to ≈277.5 F cm−3 under an ultrahigh scan rate of 1000 mV s−1 with a lower charge‐transfer resistance and nearly tenfold higher electrochemical active surface area than the 2H‐MoS2 electrode, is reported. Furthermore, 1Tʹ‐MoS2 electrode demonstrates exceptional volumetric desalination capacity of 65.1 mgNaCl cm−3 in CDI experiments. Ex situ X‐ray diffraction (XRD) reveal that the cation storage mechanism with the dynamic expansion of 1Tʹ‐MoS2 interlayer to accommodate cations such as Na+, K+, Ca2+, and Mg2+, which in turn enhances the capacity. Theoretical analysis unveils that 1Tʹ phase is thermodynamically preferable over 2H phase, the ion hydration and channel confinement also play critical role in enhancing ion adsorption. Overall, this work provides a new method to design compact 2D‐layered nanolaminates with high‐volumetric performance for CDI desalination.

Funder

Innovation and Technology Commission

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3