Composite Quasi‐Solid‐State Electrolytes with Organic–Inorganic Interface Engineering for Fast Ion Transport in Dendrite‐Free Sodium Metal Batteries

Author:

Tian Wenyue1,Li Zhaopeng1,Miao Licheng1,Sun Zhiqin1,Wang Qinglun1,Jiao Lifang1ORCID

Affiliation:

1. Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) College of Chemistry Nankai University Tianjin 300071 China

Abstract

AbstractQuasi‐solid‐state electrolytes (QSSE) are a promising candidate for addressing the limitations of liquid and solid electrolytes. However, different ion transport capacities between liquid solvents and polymers can cause localized heterogeneous distribution of Na+ fluxes. In addition, the continuous side reactions occurring at the interface between QSSE and sodium anode lead to uncontrollable dendrites growth. Herein, a novel strategy is designed to integrate the composite electrospun membrane of Na3Zr2Si2PO12 and poly(vinylidene fluoride‐co‐hexafluoropropylene) (PVDF‐HFP) into QSSE, aiming to introduce new fast ion conducting channels at the organic–inorganic interface. The efficient ion transfer pathways can effectively promote the homogenization of ion migration, enabling composite QSSE to achieve an ultrahigh ionic conductivity of 4.1 mS cm−1 at room temperature, with a Na+ transference number as high as 0.54. Moreover, the PVDF‐HFP is preferentially reduced upon contact with the sodium anode to form a “NaF‐rich” solid electrolyte interphase, which effectively suppresses the growth of dendrites. The synergistic combination of multiple strategies can realize exceptional long‐term cycling stability in both sodium symmetric batteries (≈700 h) and full batteries (2100 cycles). This study provides a new insight for constructing high performance and dendrite‐free solid‐state sodium metal batteries.

Funder

Natural Science Foundation of Tianjin Municipality

Higher Education Discipline Innovation Project

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3