Efficient Inorganic Vapor‐Assisted Defects Passivation for Perovskite Solar Module

Author:

Zhang Kun123,Wang Yang12,Tao Mingquan123,Guo Lutong123,Yang Yongrui123,Shao Jiangyang24,Zhang Yanyan25,Wang Fuyi235,Song Yanlin123ORCID

Affiliation:

1. Key Laboratory of Green Printing Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China

2. CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China

3. University of Chinese Academy of Sciences Beijing 100049 China

4. Key Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China

5. Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China

Abstract

AbstractSurface trap as intrinsic defects‐mediated non‐radiative charge recombination is a major obstacle to achieving the reliable fabrication of high‐efficiency and large‐area perovskite photovoltaics. Here a CS2 vapor‐assisted passivation strategy is proposed for perovskite solar module, aiming to passivate the iodine vacancy and uncoordinated Pb2+ caused by ion migration. Significantly, this method can avoid the disadvantages of inhomogeneity film caused by spin‐coating‐assisted passivation and reconstruction of perovskite surface from solvent. The CS2 vapor passivated perovskite device presents a higher defect formation energy (0.54 eV) of iodine vacancy than the pristine (0.37 eV), while uncoordinated Pb2+ is bonded with CS2. The shallow level defect passivation of iodine vacancy and uncoordinated Pb2+ has obviously enhanced the device efficiencies (25.20% for 0.08 cm2 and 20.66% for 40.6 cm2) and the stability, exhibiting an average T80‐lifetime of 1040 h working at the maximum power point, and maintaining over 90% of initial efficiency after 2000 h at RH = 30% and 30 °C.

Funder

National Natural Science Foundation of China

Youth Innovation Promotion Association of the Chinese Academy of Sciences

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3