Hydrovoltaic Electricity Generator with Hygroscopic Materials: A Review and New Perspective

Author:

Lim Haeseong1ORCID,Kim Min Soo1ORCID,Cho Yujang1ORCID,Ahn Jaewan1ORCID,Ahn Seongcheol1ORCID,Nam Jong Seok1ORCID,Bae Jaehyeong2ORCID,Yun Tae Gwang3,Kim Il‐Doo1ORCID

Affiliation:

1. Department of Materials Science and Engineering Korea Advanced Institute of Science and Technology (KAIST) 291 Daehak‐ro, Yuseong‐gu Daejeon 34141 Republic of Korea

2. Department of Chemical Engineering College of Engineering Kyung Hee University 1732, Deogyeong‐daero, Giheung‐gu Yongin‐si Gyeonggi‐do 17104 Republic of Korea

3. Department of Materials Science and Engineering Myongji University Yongin Gyeonggi 17058 Republic of Korea

Abstract

AbstractThe global energy crisis caused by the overconsumption of nonrenewable fuels has prompted researchers to develop alternative strategies for producing electrical energy. In this review, a fascinating strategy that simply utilizes water, an abundant natural substance throughout the globe and even in air as moisture, as a power source is introduced. The concept of the hydrovoltaic electricity generator (HEG) proposed herein involves generating an electrical potential gradient by exposing the two ends of the HEG device to dissimilar physicochemical environments, which leads to the production of an electrical current through the active material. HEGs, with a large variety of viable active materials, have much potential for expansion toward diverse applications including permanent and/or emergency power sources. In this review, representative HEGs that generate electricity by the mechanisms of diffusion, streaming, and capacitance as case studies for building a fundamental understanding of the electricity generation process are discussed. In particular, by comparing the use and absence of hygroscopic materials, HEG mechanism studies to establish active material design principles are meticulously elucidated. The review with future perspectives on electrode design using conducting nanomaterials, considerations for high performance device construction, and potential impacts of the HEG technology in improving the livelihoods are reviewed.

Funder

Samsung

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3