The Case for a Defect Genome Initiative

Author:

Yan Qimin1,Kar Swastik12ORCID,Chowdhury Sugata3,Bansil Arun1

Affiliation:

1. Department of Physics Northeastern University Boston MA 02115 USA

2. Department of Chemical Engineering Northeastern University Boston MA 02115 USA

3. Department of Physics and Astrophysics Howard University Washington DC 20059 USA

Abstract

AbstractThe Materials Genome Initiative (MGI) has streamlined the materials discovery effort by leveraging generic traits of materials, with focus largely on perfect solids. Defects such as impurities and perturbations, however, drive many attractive functional properties of materials. The rich tapestry of charge, spin, and bonding states hosted by defects are not accessible to elements and perfect crystals, and defects can thus be viewed as another class of “elements” that lie beyond the periodic table. Accordingly, a Defect Genome Initiative (DGI) to accelerate functional defect discovery for energy, quantum information, and other applications is proposed. First, major advances made under the MGI are highlighted, followed by a delineation of pathways for accelerating the discovery and design of functional defects under the DGI. Near‐term goals for the DGI are suggested. The construction of open defect platforms and design of data‐driven functional defects, along with approaches for fabrication and characterization of defects, are discussed. The associated challenges and opportunities are considered and recent advances towards controlled introduction of functional defects at the atomic scale are reviewed. It is hoped this perspective will spur a community‐wide interest in undertaking a DGI effort in recognition of the importance of defects in enabling unique functionalities in materials.

Funder

National Science Foundation

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Reference303 articles.

1. The Materials Genome Initiative: One year on

2. New frontiers for the materials genome initiative

3. Materials Genome Initiative for Global Competitiveness National Science and Technology Council Washington D.C. USA2011.

4. Materials Genome Initiative https://www.mgi.gov/about 2021.

5. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3