Extending The Calendar Life of Fiber Lithium‐Ion Batteries to 200 Days with Ultra‐High Barrier Polymer Tubes

Author:

Gong Xiaocheng1,Jiang Haibo1,Lu Chenhao1,Zhang Kun1,Long Yao1,Yang Zhe1,Sun Shiqi1,Chang Yingfan1,Ma Longmei1,Peng Huisheng1,Wang Bingjie1ORCID

Affiliation:

1. State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Institute of Fiber Materials and Devices and Laboratory of Advanced Materials Fudan University Shanghai 200438 China

Abstract

AbstractScalable fiber lithium‐ion batteries (FLIBs) have garnered significant attention due to huge potential applications in wearable technology. However, their widespread applications have been limited by inadequate cycle and calendar life, primarily due to the high permeability of the encapsulation layer to water vapor in ambient air. To address this challenge, an ultra‐high barrier composite tube is developed by blending polytrifluorochloroethylene (PCTFE) with organically modified montmorillonite (OMMT) for the continuous packaging of FLIBs. Due to the high crystallinity (≈40.21%) and small free volume (103.443 Å3), the PCTFE tube exhibited a low water vapor transmission rate (WVTR) of 0.123 mg day−1 pkg−1. Furthermore, through the melt extrusion, OMMT with its plate‐like morphology are fully exfoliated and dispersed within the PCTFE matrix. This created more complex pathways for water, increasing the diffusion path length and thereby reducing WVTR to 0.006 mg day−1 pkg−1. This innovation enabled an ultra‐long calendar life of 200 days and cycle life of 870 cycles for FLIBs, with over 80% capacity retention in ambient air. Additionally, 2%OMMT‐PCTFE‐FLIBs exhibited excellent flexibility, retaining an impressive 85.31% capacity after 10 000 bending cycles. This research presents a simple yet effective approach to enhance the lifetime and practicality of FLIBs through building a high‐performance polymer‐based encapsulation layer.

Funder

National Natural Science Foundation of China

Ministry of Science and Technology of the People's Republic of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3