High‐Performance and Ecofriendly Organic Thermoelectrics Enabled by N‐Type Polythiophene Derivatives with Doping‐Induced Molecular Order

Author:

Deng Sihui12,Kuang Yazhuo12,Liu Liyao3,Liu Xinyu12,Liu Jian12ORCID,Li Jingyu4,Meng Bin1,Di Chong‐an3,Hu Junli4,Liu Jun12ORCID

Affiliation:

1. State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China

2. School of Applied Chemistry and Engineering University of Science and Technology of China Hefei 230026 P. R. China

3. Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China

4. Key Laboratory of UV‐Emitting Materials and Technology Northeast Normal University Ministry of Education Changchun 130024 P. R. China

Abstract

AbstractThe ability of n‐type polymer thermoelectric materials to tolerate high doping loading limits further development of n‐type polymer conductivity. Herein, two alcohol‐soluble n‐type polythiophene derivatives that are n‐PT3 and n‐PT4 are reported. Due to the ability of two polymers to tolerate doping loading more significantly than 100 mol%, both achieve electrical conductivity >100 S cm−1. Moreover, the conductivity of both polythiophenes remains almost constant at high doping concentrations with excellent doping tunability, which may be related to their ability to overcome charging‐induced backbone torsion and morphology change caused by saturated doping. The characterizations reveal that n‐PT4 has a high doping level and carrier concentration (>3.10 × 1020 cm−3), and the carrier concentration continues to increase as the doping concentration increases. In addition, doping leads to improved crystal structure of n‐PT4, and the crystallinity does not decrease significantly with increasing doping concentration; even the carrier mobility increases with it. The synergistic effect of these two leads to both n‐PT3 and n‐PT4 achieving a breakthrough of 100 in conductivity and power factor. The DMlmC‐doped n‐PT4 achieves a power factor of over 150 µW m−1 K−2. These values are among the highest for n‐type organic thermoelectric materials.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3