Interfacial “Single‐Atom‐in‐Defects” Catalysts Accelerating Li+ Desolvation Kinetics for Long‐Lifespan Lithium‐Metal Batteries

Author:

Wang Jian123,Zhang Jing4,Wu Jian5,Huang Min2,Jia Lujie2,Li Linge2,Zhang Yongzheng6,Hu Hongfei2,Liu Fangqi5,Guan Qinghua2,Liu Meinan2,Adenusi Henry78,Lin Hongzhen2,Passerini Stefano139ORCID

Affiliation:

1. Helmholtz Institute Ulm (HIU) D89081 Ulm Germany

2. i‐Lab & CAS Key Laboratory of Nanophotonic Materials and Devices Suzhou Institute of Nano‐tech and Nano‐bionics Chinese Academy of Sciences Suzhou 215123 P. R. China

3. Karlsruhe Institute of Technology (KIT) D‐76021 Karlsruhe Germany

4. School of Materials Science and Engineering Xi'an University of Technology Xi'an 710048 P. R. China

5. College of Advanced Interdisciplinary Studies National University of Defense Technology Changsha 410073 P. R. China

6. State Key Laboratory of Chemical Engineering East China University of Science and Technology Shanghai 200237 P. R. China

7. The University of Hong Kong Department of Chemistry Hong Kong P. R. China

8. Hong Kong Quantum AI Lab 17 Science Park West Avenue Hong Kong P. R. China

9. Sapienza University of Rome Chemistry Department P. A. Moro 5 Rome 00185 Italy

Abstract

AbstractThe lithium‐metal anode is a promising candidate for realizing high‐energy‐density batteries owing to its high capacity and low potential. However, several rate‐limiting kinetic obstacles, such as the desolvation of Li+ solvation structure to liberate Li+, Li0 nucleation, and atom diffusion, cause heterogeneous spatial Li‐ion distribution and fractal plating morphology with dendrite formation, leading to low Coulombic efficiency and depressive electrochemical stability. Herein, differing from pore sieving effect or electrolyte engineering, atomic iron anchors to cation vacancy‐rich Co1−xS embedded in 3D porous carbon (SAFe/CVRCS@3DPC) is proposed and demonstrated as catalytic kinetic promoters. Numerous free Li ions are electrocatalytically dissociated from the Li+ solvation complex structure for uniform lateral diffusion by reducing desolvation and diffusion barriers via SAFe/CVRCS@3DPC, realizing smooth dendrite‐free Li morphologies, as comprehensively understood by combined in situ/ex situ characterizations. Encouraged by SAFe/CVRCS@3DPC catalytic promotor, the modified Li‐metal anodes achieve smooth plating with a long lifespan (1600 h) and high Coulombic efficiency without any dendrite formation. Paired with the LiFePO4 cathode, the full cell (10.7 mg cm−2) stabilizes a capacity retention of 90.3% after 300 cycles at 0.5 C, signifying the feasibility of using interfacial catalysts for modulating Li behaviors toward practical applications.

Funder

Natural Science Foundation of Jiangsu Province

National Natural Science Foundation of China

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3