Distinguishing Elements at the Sub‐Nanometer Scale on the Surface of a High Entropy Alloy

Author:

Kim Lauren1,Scougale William R.1,Sharma Prince2,Shirato Nozomi3,Wieghold Sarah4,Rose Volker4,Chen Wei5,Balasubramanian Ganesh2,Chien TeYu16ORCID

Affiliation:

1. Department of Physics & Astronomy University of Wyoming Laramie WY 82071 USA

2. Department of Mechanical Engineering & Mechanics Lehigh University Bethlehem PA 18015 USA

3. Nanoscience and Technology Division Argonne National Laboratory Lemont IL 60439 USA

4. Advanced Photon Source Argonne National Laboratory Lemont IL 60439 USA

5. Department of Mechanical Engineering Northwestern University Evanston IL 60208 USA

6. Center for Quantum Information Science & Engineering University of Wyoming Laramie WY 82071 USA

Abstract

AbstractMaterials in crystalline form possess translational symmetry (TS) when the unit cell is repeated in real space with long‐ and short‐range orders. The periodic potential in the crystal regulates the electron wave function and results in unique band structures, which further define the physical properties of the materials. Amorphous materials lack TS due to the randomization of distances and arrangements between atoms, causing the electron wave function to lack a well‐defined momentum. High entropy materials provide another way to break the TS by randomizing the potential strength at periodic atomic sites. The local elemental distribution has a great impact on physical properties in high entropy materials. It is critical to distinguish elements at the sub‐nanometer scale to uncover the correlations between the elemental distribution and the material properties. Here, the use of synchrotron X‐ray scanning tunneling microscopy (SX‐STM) with sub‐nm scale resolution in identifying elements on a high entropy alloy (HEA) surface is demonstrated. By examining the elementally sensitive X‐ray absorption spectra with an STM tip to enhance the spatial resolution, the elemental distribution on an HEA's surface at a sub‐nm scale is extracted. These results open a pathway towards quantitatively understanding high entropy materials and their material properties.

Funder

National Science Foundation

Division of Civil, Mechanical and Manufacturing Innovation

Basic Energy Sciences

NASA Astrobiology Institute

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3