Toughening CO2‐Derived Copolymer Elastomers Through Ionomer Networking

Author:

Poon Kam C.1,Gregory Georgina L.1,Sulley Gregory S.1,Vidal Fernando1,Williams Charlotte K.1ORCID

Affiliation:

1. Chemistry Research Laboratory Department of Chemistry University of Oxford Oxford OX1 3TA UK

Abstract

AbstractUtilizing carbon dioxide (CO2) to make polycarbonates through the ring‐opening copolymerization (ROCOP) of CO2 and epoxides valorizes and recycles CO2 and reduces pollution in polymer manufacturing. Recent developments in catalysis provide access to polycarbonates with well‐defined structures and allow for copolymerization with biomass‐derived monomers; however, the resulting material properties are underinvestigated. Here, new types of CO2‐derived thermoplastic elastomers (TPEs) are described together with a generally applicable method to augment tensile mechanical strength and Young's modulus without requiring material re‐design. These TPEs combine high glass transition temperature (Tg) amorphous blocks comprising CO2‐derived poly(carbonates) (A‐block), with low Tg poly(ε‐decalactone), from castor oil, (B‐block) in ABA structures. The poly(carbonate) blocks are selectively functionalized with metal‐carboxylates where the metals are Na(I), Mg(II), Ca(II), Zn(II) and Al(III). The colorless polymers, featuring <1 wt% metal, show tunable thermal (Tg), and mechanical (elongation at break, elasticity, creep‐resistance) properties. The best elastomers show >50‐fold higher Young's modulus and 21‐times greater tensile strength, without compromise to elastic recovery, compared with the starting block polymers. They have wide operating temperatures (−20 to 200 °C), high creep‐resistance and yet remain recyclable. In the future, these materials may substitute high‐volume petrochemical elastomers and be utilized in high‐growth fields like medicine, robotics, and electronics.

Funder

Engineering and Physical Sciences Research Council

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3