Piezoelectric Interlayer Enabling a Rechargeable Quasisolid‐State Sodium Battery at 0 °C

Author:

Ni Qing1,Ding Yu12,Wang Chengzhi12,Bai Shiyin1,Zhu Kunkun1,Zhao Yongjie1,Chen Lai12,Li Ning12,Li Jingbo1,Su Yuefeng12,Jin Haibo12ORCID

Affiliation:

1. School of Materials Science and Engineering Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications Beijing Key Laboratory of Environmental Science and Engineering Beijing Institute of Technology Beijing 100081 China

2. Chongqing Innovation Center Beijing Institute of Technology Chongqing 401120 China

Abstract

AbstractSolid‐state sodium (Na) batteries (SSNBs) hold great promise but suffer from several major issues, such as high interfacial resistance at the solid electrolyte/electrode interface and Na metal dendrite growth. To address these issues, a piezoelectric interlayer design for an Na3Zr2Si2PO12 (NZSP) solid electrolyte is proposed herein. Two typical piezoelectric films, AlN and ZnO, coated onto NZSP function as interlayers designed to generate a local stress‐induced field for alleviating interfacial charge aggregation coupling stress concentration and promoting uniform Na plating. The results reveal that the interlayer (ZnO) with matched modulus, high Na‐adhesion, and sufficient piezoelectricity can provide a favorable interphase. Low interfacial resistances of 91 and 239 Ω cm2 are achieved for the ZnO layer at 30 and 0 °C, respectively, which are notably lower than those for bare NZSP. Moreover, steady Na plating/stripping cycles are rendered over 850 and 4900 h at 0 and 30 °C, respectively. The superior anodic performance is further manifested in an Na2MnFe(CN)6‐based full cell which delivers discharge capacities of 125 mA h g−1 over 1600 cycles at 30 °C and 90 mA h g−1 over 500 cycles at 0 °C. A new interlayer‐design insight is clearly demonstrated for SSNBs breaking low‐temperature limits.

Funder

Beijing Institute of Technology Research Fund Program for Young Scholars

National Natural Science Foundation of China

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3