Targeted Reprogramming of Vitamin B3 Metabolism as a Nanotherapeutic Strategy towards Chemoresistant Cancers

Author:

Guo Daoxia1ORCID,Ji Xiaoyuan1,Xie Hui2,Ma Jia1,Xu Chunchen1,Zhou Yanfeng1,Chen Nan2,Wang Hui1,Fan Chunhai3,Song Haiyun1ORCID

Affiliation:

1. State Key Laboratory of Oncogenes and Related Genes Center for Single‐Cell Omics School of Public Health Shanghai Jiao Tong University School of Medicine Shanghai 200025 China

2. College of Chemistry and Materials Science The Education Ministry Key Lab of Resource Chemistry Joint International Research Laboratory of Resource Chemistry of Ministry of Education Shanghai Key Laboratory of Rare Earth Functional Materials and Shanghai Frontiers Science Center of Biomimetic Catalysis Shanghai Normal University Shanghai 200234 China

3. School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine Shanghai Jiao Tong University Shanghai 200240 China

Abstract

AbstractCancer‐associated fibroblasts (CAFs) promote cancer stem cell (CSC)‐mediated chemoresistance and immunosuppressive tumor microenvironment. However, direct depletion of CAFs may increase cancer invasiveness and metastasis. As a generalized strategy against chemoresistant cancers, Gemini‐like homotypic targeting nanoparticles (NPs) are designed for two‐pronged CAF transformation and cancer cell elimination. The CAF‐targeted NPs couple vitamin B3 metabolic reprogramming to epigenetic modulation of secreted pro‐stemness and immunosuppressive factors, thereby diminishing CSC and suppressive immune cell populations to enhance cancer cell drug susceptibility and cytotoxic T cell infiltration. In mouse models of breast, liver, pancreatic and colorectal cancers that are resistant to their respective first‐line chemotherapeutics, a single dose of hydrogel co‐delivering the Gemini‐like NPs can rehabilitate chemosensitivity, induce immune activation, and achieve tumor regression. Moreover, it stimulates robust T cell memory for long‐term protection against tumor rechallenge. This study thus represents an innovative approach with broad applicability for overcoming cancer chemoresistance.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shanghai Municipality

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3