Metasurface‐Enabled Holographic Lithography for Impact‐Absorbing Nanoarchitected Sheets

Author:

Kagias Matias12ORCID,Lee Seola1,Friedman Andrew C.23,Zheng Tianzhe24,Veysset David5,Faraon Andrei24,Greer Julia R.12

Affiliation:

1. Division of Engineering and Applied Science California Institute of Technology Pasadena CA 91125 USA

2. Kavli Nanoscience Institute Caltech Pasadena CA 91125 USA

3. Division of Chemistry and Chemical Engineering California Institute of Technology Pasadena CA 91125 USA

4. Thomas J. Watson, Sr., Laboratory of Applied Physics California Institute of Technology Pasadena CA 91125 USA

5. Department of Chemistry Massachusetts Institute of Technology Cambridge MA 02139 USA

Abstract

AbstractNanoarchitected materials represent a class of structural meta‐materials that utilze nanoscale features to achieve unconventional material properties such as ultralow density and high energy absorption. A dearth of fabrication methods capable of producing architected materials with sub‐micrometer resolution over large areas in a scalable manner exists. A fabrication technique is presented that employs holographic patterns generated by laser exposure of phase metasurface masks in negative‐tone photoresists to produce 30–40 µm‐thick nanoarchitected sheets with 2.1 × 2.4 cm2 lateral dimensions and ≈500 nm‐wide struts organized in layered 3D brick‐and‐mortar‐like patterns to result in ≈50–70% porosity. Nanoindentation arrays over the entire sample area reveal the out‐of‐plane elastic modulus to vary between 300 MPa and 4 GPa, with irrecoverable post‐elastic material deformation commencing via individual nanostrut buckling, densification within layers, shearing along perturbation perimeter, and tensile cracking. Laser induced particle impact tests (LIPIT) indicate specific inelastic energy dissipation of 0.51–2.61 MJ kg−1, which is comparable to other high impact energy absorbing composites and nanomaterials, such as Kevlar/poly(vinyl butyral) (PVB) composite, polystyrene, and pyrolized carbon nanolattices with 23% relative density. These results demonstrate that holographic lithography offers a promising platform for scalable manufacturing of nanoarchitected materials with impact resistant capabilities.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3