Redox Gating for Colossal Carrier Modulation and Unique Phase Control

Author:

Zhang Le12ORCID,Liu Changjiang13ORCID,Cao Hui124ORCID,Erwin Andrew J.12ORCID,Fong Dillon D.1ORCID,Bhattacharya Anand1ORCID,Yu Luping5,Stan Liliana6ORCID,Zou Chongwen7ORCID,Tirrell Matthew V.128ORCID,Zhou Hua4ORCID,Chen Wei128ORCID

Affiliation:

1. Materials Science Division Argonne National Laboratory Lemont IL 60439 USA

2. Center for Molecular Engineering Argonne National Laboratory Lemont IL 60439 USA

3. Department of Physics University at Buffalo SUNY Buffalo NY 14260 USA

4. X‐ray Science Division Advanced Photon Source Argonne National Laboratory Lemont IL 60439 USA

5. Department of Chemistry and the James Franck Institute University of Chicago Chicago IL 60637 USA

6. Center for Nanoscale Materials Nanoscience and Technology Division Argonne National Laboratory Lemont IL 60439 USA

7. National Synchrotron Radiation Laboratory University of Science and Technology of China Hefei 230029 China

8. Pritzker School of Molecular Engineering University of Chicago Chicago IL 60637 USA

Abstract

AbstractRedox gating, a novel approach distinct from conventional electrolyte gating, combines reversible redox functionalities with common ionic electrolyte moieties to engineer charge transport, enabling power‐efficient electronic phase control. This study achieves a colossal sheet carrier density modulation beyond 1016 cm−2, sustainable over thousands of cycles, all within the sub‐volt regime for functional oxide thin films. The key advantage of this method lies in the controlled injection of a large quantity of carriers from the electrolyte into the channel material without the deleterious effects associated with traditional electrolyte gating processes such as the production of ionic defects or intercalated species. The redox gating approach offers a simple and practical means of decoupling electrical and structural phase transitions, enabling the isostructural metal‐insulator transition and improved device endurance. The versatility of redox gating extends across multiple materials, irrespective of their crystallinity, crystallographic orientation, or carrier type (n‐ or p‐type). This inclusivity encompasses functional heterostructures and low‐dimensional quantum materials composed of sustainable elements, highlighting the broad applicability and potential of the technique in electronic devices.

Funder

Office of Science

Laboratory Directed Research and Development

Argonne National Laboratory

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3