Protonation Stimulates the Layered to Rock Salt Phase Transition of Ni‐Rich Sodium Cathodes

Author:

Xiao Biwei1,Zheng Yu23,Song Miao4,Liu Xiang5,Lee Gi‐Hyeok67,Omenya Fred1,Yang Xin1,Engelhard Mark H.8,Reed David1,Yang Wanli6,Amine Khalil5,Xu Gui‐Liang5,Balbuena Perla B.239,Li Xiaolin1ORCID

Affiliation:

1. Energy & Environment Directorate Pacific Northwest National Laboratory Richland WA 99352 USA

2. Department of Chemical Engineering Texas A&M University College Station TX 77843‐3122 USA

3. Department of Chemistry Texas A&M University College Station TX 77843‐3122 USA

4. Physical and Computational Sciences Directorate Pacific Northwest National Laboratory Richland WA 99352 USA

5. Chemical Sciences and Engineering Division Argonne National Laboratory 9700 South Cass Avenue Lemont IL 60439 USA

6. Advanced Light Source Lawrence Berkeley National Laboratory Berkeley CA 94720 USA

7. Department of Materials Science and Engineering Dongguk University Seoul 04620 Republic of Korea

8. Environmental Molecular Sciences Laboratory Pacific Northwest National Laboratory Richland WA 99352 USA

9. Department of Materials Science and Engineering Texas A&M University College Station TX 77843‐3122 USA

Abstract

AbstractProtonation of oxide cathodes triggers surface transition metal dissolution and accelerates the performance degradation of Li‐ion batteries. While strategies are developed to improve cathode material surface stability, little is known about the effects of protonation on bulk phase transitions in these cathode materials or their sodium‐ion battery counterparts. Here, using NaNiO2 in electrolytes with different proton‐generating levels as model systems, a holistic picture of the effect of incorporated protons is presented. Protonation of lattice oxygens stimulate transition metal migration to the alkaline layer and accelerates layered‐rock‐salt phase transition, which leads to bulk structure disintegration and anisotropic surface reconstruction layers formation. A cathode that undergoes severe protonation reactions attains a porous architecture corresponding to its multifold performance fade. This work reveals that interactions between electrolyte and cathode that result in protonation can dominate the structural reversibility/stability of bulk cathodes, and the insight sheds light for the development of future batteries.

Funder

Vehicle Technologies Office

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3