High‐Energy Earth‐Abundant Cathodes with Enhanced Cationic/Anionic Redox for Sustainable and Long‐Lasting Na‐Ion Batteries

Author:

Zhang Xu12,Zuo Wenhua3,Liu Shiqi12,Zhao Chen3,Li Qingtian45,Gao Yibo3,Liu Xiang3,Xiao Dongdong6,Hwang Inhui7,Ren Yang7,Sun Cheng‐Jun7,Chen Zonghai3,Wang Boya12,Feng Yunfa12,Yang Wanli4,Xu Gui‐Liang3ORCID,Amine Khalil3,Yu Haijun12

Affiliation:

1. Institute of Advanced Battery Materials and Devices College of Materials Science and Engineering Beijing University of Technology Beijing 100124 P. R. China

2. Key Laboratory of Advanced Functional Materials Ministry of Education Beijing University of Technology Beijing 100124 P. R. China

3. Chemical Sciences and Engineering Division Argonne National Laboratory Lemont Illinois 60439 USA

4. Advanced Light Source Lawrence Berkeley National Laboratory Berkeley CA 94720 USA

5. State Key Laboratory of Functional Materials for Informatics Shanghai Institute of Microsystem and Information Technology Chinese Academy of Sciences 865 Changning Road Shanghai 200050 China

6. Beijing National Laboratory for Condensed Matter Physics Institute of Physics Chinese Academy of Sciences Beijing 100190 China

7. X‐ray Science Division Argonne National Laboratory 9700 South Cass Avenue Lemont IL 60439 USA

Abstract

AbstractLayered iron/manganese‐based oxides are a class of promising cathode materials for sustainable batteries due to their high energy densities and earth abundance. However, the stabilization of cationic and anionic redox reactions in these cathodes during cycling at high voltage remain elusive. Here, an electrochemically/thermally stable P2‐Na0.67Fe0.3Mn0.5Mg0.1Ti0.1O2 cathode material with zero critical elements is designed for sodium‐ion batteries (NIBs) to realize a highly reversible capacity of ≈210 mAh g−1 at 20 mA g−1 and good cycling stability with a capacity retention of 74% after 300 cycles at 200 mA g−1, even when operated with a high charge cut‐off voltage of 4.5 V versus sodium metal. Combining a suite of cutting‐edge characterizations and computational modeling, it is shown that Mg/Ti co‐doping leads to stabilized surface/bulk structure at high voltage and high temperature, and more importantly, enhances cationic/anionic redox reaction reversibility over extended cycles with the suppression of other undesired oxygen activities. This work fundamentally deepens the failure mechanism of Fe/Mn‐based layered cathodes and highlights the importance of dopant engineering to achieve high‐energy and earth‐abundant cathode material for sustainable and long‐lasting NIBs.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Beijing Municipality

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3