Fibrous Zr‐MOF Nanozyme Aerogels with Macro‐Nanoporous Structure for Enhanced Catalytic Hydrolysis of Organophosphate Toxins

Author:

Ma Kaikai12,Cheung Yuk Ha2,Kirlikovali Kent O.1,Xie Haomiao1,Idrees Karam B.1,Wang Xiaoliang1,Islamoglu Timur1,Xin John H.2,Farha Omar K.13ORCID

Affiliation:

1. Department of Chemistry and International Institute for Nanotechnology Northwestern University 2145 Sheridan Road Evanston IL 60208 USA

2. School of Fashion and Textiles The Hong Kong Polytechnic University Hung Hom Hong Kong SAR China

3. Department of Chemical and Biological Engineering Northwestern University 2145 Sheridan Road Evanston IL 60208 USA

Abstract

AbstractMetal–organic frameworks (MOFs) with Lewis acid catalytic sites, such as zirconium‐based MOFs (Zr‐MOFs), comprise a growing class of phosphatase‐like nanozymes that can degrade toxic organophosphate pesticides and nerve agents. Rationally engineering and shaping MOFs from as‐synthesized powders into hierarchically porous monoliths is essential for their use in emerging applications, such as filters for air and water purification and personal protection gear. However, several challenges still limit the production of practical MOF composites, including the need for sophisticated reaction conditions, low MOF catalyst loadings in the resulting composites, and poor accessibility to MOF‐based active sites. To overcome these limitations, a rapid synthesis method is developed to introduce Zr‐MOF nanozyme coating into cellulose nanofibers, resulting in the formation of processable monolithic aerogel composites with high MOF loadings. These composites contain Zr‐MOF nanozymes embedded in the structure, and hierarchical macro‐micro porosity enables excellent accessibility to catalytic active sites. This multifaceted rational design strategy, including the selection of a MOF with many catalytic sites, fine‐tuning the coating morphology, and the fabrication of a hierarchically structured monolithic aerogel, renders synergistic effects toward the efficient continuous hydrolytic detoxification of organophosphorus‐based nerve agent simulants and pesticides from contaminated water.

Funder

Army Research Office

National Science Foundation

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3