Carbon Additive Manufacturing with a Near‐Replica “Green‐to‐Brown” Transformation

Author:

Zhang Chunyan12,Shi Baohui23,He Jinlong4,Zhou Lyu5,Park Soyeon2,Doshi Sagar6,Shang Yuanyuan23,Deng Kaiyue2,Giordano Marc2,Qi Xiangjun3,Cui Shuang5,Liu Ling4,Ni Chaoying16,Fu Kun Kelvin26ORCID

Affiliation:

1. Department of Material Science and Engineering University of Delaware Newark DE 19716 USA

2. Department of Mechanical Engineering University of Delaware Newark DE 19716 USA

3. College of Textiles and Clothing Qingdao University Qingdao Shandong 266071 China

4. Department of Mechanical Engineering Temple University Philadelphia PA 19122 USA

5. Department of Mechanical Engineering University of Texas at Dallas Richardson TX 75080 USA

6. Center for Composite Materials University of Delaware Newark DE 19716 USA

Abstract

AbstractNanocomposites containing nanoscale materials offer exciting opportunities to encode nanoscale features into macroscale dimensions, which produces unprecedented impact in material design and application. However, conventional methods cannot process nanocomposites with a high particle loading, as well as nanocomposites with the ability to be tailored at multiple scales. A composite architected mesoscale process strategy that brings particle loading nanoscale materials combined with multiscale features including nanoscale manipulation, mesoscale architecture, and macroscale formation to create spatially programmed nanocomposites with high particle loading and multiscale tailorability is reported. The process features a low‐shrinking (<10%) “green‐to‐brown” transformation, making a near‐geometric replica of the 3D design to produce a “brown” part with full nanomaterials to allow further matrix infill. This demonstration includes additively manufactured carbon nanocomposites containing carbon nanotubes (CNTs) and thermoset epoxy, leading to multiscale CNTs tailorability, performance improvement, and 3D complex geometry feasibility. The process can produce nanomaterial‐assembled architectures with 3D geometry and multiscale features and can incorporate a wide range of matrix materials, such as polymers, metals, and ceramics, to fabricate nanocomposites for new device structures and applications.

Funder

National Science Foundation

U.S. Department of Energy

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3