A Physiologically Responsive Nanocomposite Hydrogel for Treatment of Head and Neck Squamous Cell Carcinoma via Proteolysis‐Targeting Chimeras Enhanced Immunotherapy

Author:

Wu Yaping1,Chang Xiaowei2,Yang Guizhu1,Chen Li2,Wu Qi1,Gao Jiamin1,Tian Ran2,Mu Wenyun2,Gooding John Justin3,Chen Xin2ORCID,Sun Shuyang1ORCID

Affiliation:

1. Department of Oral and Maxillofacial‐Head Neck Oncology Shanghai Ninth People's Hospital Shanghai Jiao Tong University School of Medicine College of Stomatology Shanghai Jiao Tong University National Center for Stomatology National Clinical Research Center for Oral Diseases Shanghai Key Laboratory of Stomatology Shanghai Research Institute of Stomatology Shanghai 200011 P. R. China

2. Department of Chemical Engineering Shaanxi Key Laboratory of Energy Chemical Process Intensification Institute of Polymer Science in Chemical Engineering School of Chemical Engineering and Technology Xi'an Jiaotong University Xi'an 710049 P. R. China

3. School of Chemistry Australian Centre for Nano‐Medicine and ARC Australian Centre of Excellence in Convergent Bio‐Nano Science and Technology University of New South Wales Sydney 2052 Australia

Abstract

AbstractAlthough immunotherapy has revolutionized oncotherapy, only ≈15% of head and neck squamous cell carcinoma (HNSCC) patients benefit from the current therapies. An immunosuppressive tumor microenvironment (TME) and dysregulation of the polycomb ring finger oncogene BMI1 are potential reasons for the failure. Herein, to promote immunotherapeutic efficacy against HNSCC, an injectable nanocomposite hydrogel is developed with a polymer framework (PLGA‐PEG‐PLGA) that is loaded with both imiquimod encapsulated CaCO3 nanoparticles (RC) and cancer cell membrane (CCM)‐coated mesoporous silica nanoparticles containing a peptide‐based proteolysis‐targeting chimeras (PROTAC) for BMI1 and paclitaxel (PepM@PacC). Upon injection, this nanocomposite hydrogel undergoes in situ gelation, after which it degrades in the TME over time, releasing RC and PepM@PacC nanoparticles to respectively perform immunotherapy and chemotherapy. Specifically, the RC particles selectively manipulate tumor‐associated macrophages and dendritic cells to activate a T‐cell immune response, while CCM‐mediated homologous targeting and endocytosis delivers the PepM@PacC particles into cancer cells, where endogenous glutathione promotes disulfide bond cleavage to release the PROTAC peptide for BMI1 degradation and frees the paclitaxel from the particle pores to elicit apoptosis meanwhile enhance immunotherapy. Thus, the nanocomposite hydrogel, which is designed to exploit multiple known vulnerabilities of HNSCC, succeeds in suppressing both growth and metastasis of HNSCC.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3