Achieving Superior Tensile Performance in Individual Metal−Organic Framework Crystals

Author:

Cheng Junye1ORCID,Ran Sijia2,Li Tian3,Yan Ming4,Wu Jing5,Boles Steven2,Liu Bin6,Raza Hassan3,Ullah Sana6,Zhang Wenjun6,Chen Guohua3,Zheng Guangping3

Affiliation:

1. Department of Materials Science Shenzhen MSU‐BIT University Shenzhen Guangdong Province 517182 P. R. China

2. Department of Electrical Engineering The Hong Kong Polytechnic University Hung Hom Kowloon Hong Kong SAR 999077 China

3. Department of Mechanical Engineering Hong Kong Polytechnic University Hung Hom Kowloon Hong Kong SAR 999077 China

4. Department of Materials Science and Engineering and Shenzhen Key Laboratory for Additive Manufacturing of High‐performance Materials Southern University of Science and Technology Shenzhen 518055 China

5. Cryo‐EM Center Southern University of Science and Technology Shenzhen 518055 China

6. Department of Materials Science and Engineering City University of Hong Kong Hong Kong 999077 China

Abstract

AbstractRapid advances in the engineering application prospects of metal−organic framework (MOF) materials necessitate an urgent in‐depth understanding of their mechanical properties. This work demonstrates unprecedented recoverable elastic deformation of Ni‐tetraphenylporphyrins (Ni‐TCPP) MOF nanobelts with a tensile strain as high as 14%, and a projected yield strength‐to‐Young's modulus ratio exceeding the theoretical limit (≈10%) for crystalline materials. Based on first‐principles simulations, the observed behavior of MOF crystal can be attributed to the mechanical deformation induced conformation transition and the formation of helical configuration of dislocations under high stresses, arising from their organic ligand building blocks in the crystal structures. The investigations of the mechanical properties along with electromechanical properties demonstrate that MOF materials have exciting application potential for biomechanics integrated systems, flexible electronics, and nanoelectromechanical devices.

Funder

National Natural Science Foundation of China

Hong Kong Polytechnic University

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3