Tough Supramolecular Hydrogels Crafted via Lignin‐Induced Self‐Assembly

Author:

Pan Xiaofeng12,Pan Jiawei1,Li Xiang1,Wang Zhongkai1,Ni Yonghao3ORCID,Wang Qinhua1

Affiliation:

1. Anhui Provincial Engineering Center for High‐Performance Biobased Nylons School of Materials and Chemistry Anhui Agricultural University Hefei Anhui 230036 P. R. China

2. National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials College of Material Engineering Fujian Agriculture and Forestry University Fuzhou Fujian 350108 P. R. China

3. Department of Chemical Engineering University of New Brunswick Fredericton New Brunswick E3B 5A3 Canada

Abstract

AbstractSupramolecular hydrogels are typically assembled through weak non‐covalent interactions, posing a significant challenge in achieving ultra strength. Developing a higher strength based on molecular/nanoscale engineering concepts is a potential improvement strategy. Herein, a super‐tough supramolecular hydrogel is assembled by gradually diffusing lignosulfonate sodium (LS) into a polyvinyl alcohol (PVA) solution. Both simulations and analytical results indicate that the assembly and subsequent enhancement of the crosslinked network are primarily attributed to LS‐induced formation and gradual densification of strong crystalline domains within the hydrogel. The optimized hydrogel exhibits impressive mechanical properties with tensile strength of ≈20 MPa, Young's modulus of ≈14 MPa, and toughness of ≈50 MJ m⁻3, making it the strongest lignin‐PVA/polymer hydrogel known so far. Moreover, LS provides the supramolecular hydrogel with excellent low‐temperature stability (<‐60 °C), antibacterial, and UV‐blocking capability (≈100%). Interestingly, the diffusion ability of LS is demonstrated for self‐restructuring damaged supramolecular hydrogel, achieving 3D patterning on hydrogel surfaces, and enhancing the local strength of the freeze‐thaw PVA hydrogel. The goal is to foster a versatile hydrogel platform by combining eco‐friendly LS with biocompatible PVA, paving the way for innovation and interdisciplinarity in biomedicine, engineering materials, and forestry science.

Funder

China Scholarship Council

Canada Excellence Research Chairs, Government of Canada

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3