Affiliation:
1. State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 P. R. China
2. Jihua Laboratory 28 Huandao South Road Foshan Guangdong Province 528200 P. R. China
3. State Key Laboratory of Coordination Chemistry Collaborative Innovation Center of Advanced Microstructures Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
Abstract
AbstractAdvanced circularly polarized multiple‐resonance thermally activated delayed fluorescence (CP‐MR‐TADF) materials synergize the advantages of circularly polarized luminescence (CPL), narrowband emission, and the TADF characteristic, which can be fabricated into highly efficient circularly polarized organic light‐emitting diodes (CP‐OLEDs) with high color purity, directly facing the urgent market strategic demand of ultrahigh‐definition and 3D displays. In this work, based on an edge‐topology molecular‐engineering (ETME) strategy, a pair of high‐performance CP‐MR‐TADF enantiomers, (P and M)‐BN‐Py, is developed, which merges the intrinsically helical chirality into the MR framework. The optimized CP‐OLEDs with (P and M)‐BN‐Py emitters and the newly developed ambipolar transport host PhCbBCz exhibit pure green emission with sharp peaks of 532 nm, full‐width at half‐maximum (FWHM) of 37 nm, and Commission Internationale de L'Eclairage (CIE) coordinates of (0.29, 0.68). Importantly, they achieve remarkable maximum external quantum efficiencies (EQEs) of 30.6% and 29.2%, and clear circularly polarized electroluminescence (CPEL) signals with electroluminescence dissymmetry factors (gELs) of −4.37 × 10−4 and +4.35 × 10−4 for (P)‐BN‐Py and (M)‐BN‐Py, respectively.
Funder
National Natural Science Foundation of China
National Key Research and Development Program of China
Jihua Laboratory
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Cited by
40 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献