Exotic Electronic Properties of 2D Nanosheets Isolated from Liquid Phase Exfoliated Phyllosilicate Minerals

Author:

Wei Cencen1,Roy Abhijit23,Tripathi Manoj1,Aljarid Adel K.A.1,Salvage Jonathan P.4,Roe S. Mark5,Arenal Raul236,Boland Conor S.1ORCID

Affiliation:

1. School of Mathematical and Physical Sciences University of Sussex Brighton BN1 9QH UK

2. Instituto de Nanociencia y Materiales de Aragon (INMA) CSIC‐Universidad de Zaragoza Zaragoza 50009 Spain

3. Laboratorio de Microscopias Avanzadas (LMA) Universidad de Zaragoza Calle Mariano Esquillor Zaragoza 50018 Spain

4. School of Pharmacy and Biomolecular Sciences University of Brighton Brighton BN1 9PH UK

5. School of Life Sciences University of Sussex Brighton BN1 9QH UK

6. ARAID Foundation Zaragoza 50018 Spain

Abstract

AbstractSpectrally inactive, electrically insulating, and chemically inert are adjectives broadly used to describe phyllosilicate minerals like mica and chlorite. Here, the above is disproved by demonstrating aqueous suspensions of liquid exfoliated nanosheets from five bulk mica types and chlorite schist. Nanosheet quality is confirmed via transmission electron and X‐ray photoelectron spectroscopies, as well as electron diffraction. Through Raman spectroscopy, a previously unreported size‐ and layer‐dependent spectral fingerprint is observed. When analyzing the high‐yield suspensions (≈1 mg mL−1) through UV–vis spectroscopy, all phyllosilicates present bandgap (Eg) narrowing from ≈7 eV in the bulk to ≈4 eV for monolayers. Unusually, the bandgap is inversely proportional to the areal size (A) of the nanosheets, measured via atomic force microscopy. Due to an unrecorded quantum confinement effect, nanosheet electronic properties scale toward semiconducting behavior (bandgap ≈3 eV) as nanosheet area increases. Furthermore, modeling X‐ray diffraction spectra shows that the root cause of the initial bandgap narrowing is lattice relaxation. Finally, with their broad range of isomorphically substituted ions, phyllosilicate nanosheets show remarkable catalytic properties for hydrogen production.

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3