Switching Hydrophobic Interface with Ionic Valves for Reversible Zinc Batteries

Author:

Tang Di123,Zhang Xinyue4,Han Daliang123,Cui Changjun123,Han Zishan123,Wang Lu123,Li Zhiguo123,Zhang Bo123,Liu Yingxin123,Weng Zhe123,Yang Quan‐Hong123ORCID

Affiliation:

1. Nanoyang Group, Tianjin Key Laboratory of Advanced Carbon and Electrochemical Energy Storage School of Chemical Engineering and Technology and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin University Tianjin 300072 China

2. National Industry‐Education Integration Platform of Energy Storage Tianjin University Tianjin 300072 China

3. Haihe Laboratory of Sustainable Chemical Transformations Tianjin 300192 China

4. School of Chemical Engineering and Materials Tianjin University of Science and Technology Tianjin 300457 China

Abstract

AbstractDeveloping hydrophobic interface has proven effective in addressing dendrite growth and side reactions during zinc (Zn) plating in aqueous Zn batteries. However, this solution inadvertently impedes the solvation of Zn2+ with H2O and subsequent ionic transport during Zn stripping, leading to insufficient reversibility. Herein, an adaptive hydrophobic interface that can be switched “on” and “off” by ionic valves to accommodate the varying demands for interfacial H2O during both the Zn plating and stripping processes, is proposed. This concept is validated using octyltrimethyl ammonium bromide (C8TAB) as the ionic valve, which can initiatively establish and remove a hydrophobic interface in response to distinct electric‐field directions during Zn plating and stripping, respectively. Consequently, the Zn anode exhibits an extended cycling life of over 2500 h with a high Coulombic efficiency of ≈99.8%. The full cells also show impressive capacity retention of over 85% after 1 000 cycles at 5 A g−1. These findings provide a new insight into interface design for aqueous metal batteries.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3