Nacre‐Inspired Bacterial Cellulose/Mica Nanopaper with Excellent Mechanical and Electrical Insulating Properties by Biosynthesis

Author:

Sun Wen‐Bin1,Han Zi‐Meng1,Yue Xin1,Zhang Hao‐Yu1,Yang Kun‐Peng1,Liu Zhao‐Xiang1,Li De‐Han1,Zhao Yu‐Xiang1,Ling Zhang‐Chi1,Yang Huai‐Bin1,Guan Qing‐Fang1,Yu Shu‐Hong12ORCID

Affiliation:

1. Department of Chemistry Institute of Biomimetic Materials & Chemistry Anhui Engineering Laboratory of Biomimetic Materials Division of Nanomaterials & Chemistry Hefei National Research Center for Physical Sciences at the Microscale University of Science and Technology of China Hefei 230026 China

2. Institute of Innovative Materials New Cornerstone Science Laboratory, Department of Materials Science and Engineering Department of Chemistry Southern University of Science and Technology 518055 Shenzhen China

Abstract

AbstractThe exploration of extreme environments has become necessary for understanding and changing nature. However, the development of functional materials suitable for extreme conditions is still insufficient. Herein, a kind of nacre‐inspired bacterial cellulose (BC)/synthetic mica (S‐Mica) nanopaper with excellent mechanical and electrical insulating properties that has excellent tolerance to extreme conditions is reported. Benefited from the nacre‐inspired structure and the 3D network of BC, the nanopaper exhibits excellent mechanical properties, including high tensile strength (375 MPa), outstanding foldability, and bending fatigue resistance. In addition, S‐Mica arranged in layers endows the nanopaper with remarkable dielectric strength (145.7 kV mm−1) and ultralong corona resistance life. Moreover, the nanopaper is highly resistant to alternating high and low temperatures, UV light, and atomic oxygen, making it an ideal candidate for extreme environment‐resistant materials.

Funder

University of Science and Technology of China

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3