Enhancing Purely Organic Room Temperature Phosphorescence via Supramolecular Self‐Assembly

Author:

Zheng Han1,Zhang Zaiyong2,Cai Suzhi1,An Zhongfu3,Huang Wei134ORCID

Affiliation:

1. Strait Institute of Flexible Electronics (SIFE, Future Technologies) Fujian Key Laboratory of Flexible Electronics Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE) Fuzhou Fujian 350117 China

2. Pharmaceutical Analytical & Solid‐State Chemistry Research Center Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China

3. Key Laboratory of Flexible Electronics & Institute of Advanced Materials Nanjing Tech University Nanjing 211816 China

4. Frontiers Science Center for Flexible Electronics Shaanxi Institute of Flexible Electronics (SIFE) Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China

Abstract

AbstractLong‐lived and highly efficient room temperature phosphorescence (RTP) materials are in high demand for practical applications in lighting and display, security signboards, and anti‐counterfeiting. Achieving RTP in aqueous solutions, near‐infrared (NIR) phosphorescence emission and NIR‐excited RTP are crucial for applications in bio‐imaging, but these goals pose significant challenges. Supramolecular self‐assembly provides an effective strategy to address the above problems. This review focuses on the recent advances in the enhancement of RTP via supramolecular self‐assembly, covering four key aspects: small molecular self‐assembly, cocrystals, the self‐assembly of macrocyclic hosts and guests, and multi‐stage supramolecular self‐assembly. This review not only highlights progress in these areas but also underscores the prominent challenges associated with developing supramolecular RTP materials. The resulting strategies for the development of high‐performance supramolecular RTP materials are discussed, aiming to satisfy the practical applications of RTP materials in biomedical science.This article is protected by copyright. All rights reserved

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3