Porifera‐Inspired Lightweight, Thin, Wrinkle‐Resistance, and Multifunctional MXene Foam

Author:

Pan Fei1,Shi Yuyang1,Yang Yang1,Guo Hongtao1,Li Lixin1,Jiang Haojie1,Wang Xiao1,Zeng Zhihui2,Lu Wei1ORCID

Affiliation:

1. Shanghai Key Lab. of D&A for Metal‐Functional Materials School of Materials Science & Engineering Tongji University Shanghai 201804 P.R. China

2. Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials (Ministry of Education) School of Materials Science and Engineering Shandong University Jinan Jinan 250061 P. R. China

Abstract

AbstractTransition metal carbides/nitrides (MXenes) demonstrate a massive potential in constructing lightweight, multifunctional wearable electromagnetic interference (EMI) shields for application in various fields. Nevertheless, it remains challenging to develop a facile, scalable approach to prepare the MXene‐based macrostructures characterized by low density, low thickness, high mechanical flexibility, and high EMI SE at the same time. Herein, the ultrathin MXene/reduced graphene oxide (rGO)/Ag foams with a porifera‐inspired hierarchically porous microstructure are prepared by combining Zn2+ diffusion induction and hard template methods. The hierarchical porosity, which includes a mesoporous skeleton and a microporous MXene network within the skeleton, not only exerts a regulatory effect on stress distribution during compression, making the foams rubber‐like resistant to wrinkling but also provides more channels for multiple reflections of electromagnetic waves. Due to the interaction between Ag nanosheets, MXene/rGO, and porous structure, it is possible to produce an outstanding EMI shielding performance with the specific surface shielding effectiveness reaching 109152.4 dB cm2 g−1. Furthermore, the foams exhibit multifunctionalities, such as transverse Joule heating, longitudinal heat insulation, self‐cleaning, fire resistance, and motion detection. These discoveries open up a novel pathway for the development of lightweight MXene‐based materials with considerable application potential in wearable electromagnetic anti‐interference devices.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3