Artificial Tendrils Mimicking Plant Movements by Mismatching Modulus and Strain in Core and Shell

Author:

Farhan Muhammad1,Klimm Frederike234,Thielen Marc24ORCID,Rešetič Andraž1ORCID,Bastola Anil1ORCID,Behl Marc1,Speck Thomas234ORCID,Lendlein Andreas15ORCID

Affiliation:

1. Institute of Active Polymers Helmholtz‐Zentrum Hereon Kantstr. 55 14513 Teltow Germany

2. Plant Biomechanics Group Institute of Biology University of Freiburg 79104 Freiburg Germany

3. Cluster of Excellence livMatS @ FIT‐Freiburg Center for Interactive Materials and Bioinspired Technologies University of Freiburg Georges‐Köhler‐Allee 105 79110 Freiburg Germany

4. FMF – Freiburg Materials Research Center Stefan‐Meier‐Straße 21 79104 Freiburg Germany

5. Institute of Chemistry University of Potsdam 14469 Potsdam Germany

Abstract

AbstractMotile organs have evolved in climbing plants enabling them to find a support and, after secure attachment, to reach for sunlight without investing in a self‐supporting stem. Searching movements, the twining of stems, and the coiling of tendrils are involved in successful plant attachment. Such coiling movements have great potential in robotic applications, especially if they are reversible. Here, the underlying mechanism of tendril movement based on contractile fibers is reported, as illustrated by a function–morphological analysis of tendrils in several liana species and the encoding of such a principle in a core–shell multimaterial fiber (MMF) system. MMFs are composed of a shape‐memory core fiber (SMCF) and an elastic shell. The shape‐memory effect of the core fibers enables the implementation of strain mismatch in the MMF by physical means and provides thermally controlled reversible motion. The produced MMFs show coiling and/or uncoiling behavior, with a high reversible actuation magnitude of ≈400%, which is almost 20 times higher compared with similar stimuli for sensitive soft actuators. The movements in these MMFs rely on the crystallization/melting behavior of oriented macromolecules of SMCF.

Funder

Helmholtz Association

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3