Ultrasmall Inorganic Mesoporous Nanoparticles: Preparation, Functionalization, and Application

Author:

Wang Jie1,Fan Xiankai1,Han Xiao1,Lv Kangle2ORCID,Zhao Yujuan1,Zhao Zaiwang1,Zhao Dongyuan13ORCID

Affiliation:

1. College of Energy Materials and Chemistry College of Chemistry and Chemical Engineering Inner Mongolia University Hohhot 010070 China

2. College of Resources and Environment South‐Central Minzu University Wuhan 430074 China

3. College of Chemistry and Materials Department of Chemistry Laboratory of Advanced Materials Fudan University Shanghai 200433 China

Abstract

AbstractUltrasmall mesoporous nanoparticles (<50 nm), a unique porous nanomaterial, have been widely studied in many fields in the last decade owing to the abundant advantages, involving rich mesopores, low density, high surface area, numerous reaction sites, large cavity space, ultrasmall size, etc. This paper presents a review of recent advances in the preparation, functionalization, and applications of ultrasmall inorganic mesoporous nanoparticles for the first time. The soft monomicelles‐directed method, in contrast to the hard‐template and template‐free methods, is more flexible in the synthesis of mesoporous nanoparticles. This is because the amphiphilic micelle has tunable functional blocks, controlled molecule masses, configurations and mesostructures. Focus on the soft micelle directing method, monomicelles could be classified into four types, i.e., the Pluronic‐type block copolymer monomicelles, laboratory‐synthesized amphiphilic block copolymers monomicelles, the single‐molecule star‐shaped block copolymer monomicelles, and the small‐molecule anionic/cationic surfactant monomicelles. This paper also reviews the functionalization of the inner mesopores and the outer surfaces, which includes constructing the yolkshell structures (encapsulated nanoparticles), anchoring the active components packed on the shell and building an asymmetric Janus architecture. Then, several representative applications, involving catalysis, energy storage, and biomedicines are presented. Finally, the prospects and challenges of controlled synthesis and large‐scale applications of ultrasmall mesoporous nanoparticles in the future are foreseen.

Funder

Inner Mongolia University

National Natural Science Foundation of China

Publisher

Wiley

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3