Tailoring Polaron Dimensions in Lead‐Tin Hybrid Perovskites

Author:

Gao Lei12,Zhang Heng2,Zhang Yong1,Fu Shuai2,Geuchies Jaco J.2,Valli Donato3,Saha Rafikul Ali4,Pradhan Bapi3,Roeffaers Maarten4,Debroye Elke3,Hofkens Johan23,Lu Junpeng1,Ni Zhenhua1,Wang Hai I.25,Bonn Mischa2ORCID

Affiliation:

1. Key Laboratory of Quantum Materials and Devices of Ministry of Education School of Physics Southeast University Nanjing 211189 China

2. Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany

3. Department of Chemistry KU Leuven Celestijnenlaan 200F Leuven 3001 Belgium

4. cMACS Department of Microbial and Molecular Systems KU Leuven Celestijnenlaan 200F Leuven 3001 Belgium

5. Nanophotonics Debye Institute for Nanomaterials Science Utrecht University Princetonplein 1 Utrecht 3584 CC Netherlands

Abstract

AbstractCharge carriers in the soft and polar perovskite lattice form so‐called polaron quasiparticles, charge carriers dressed with a lattice deformation. The spatial extent of a polaron is governed by the material's electron‐phonon interaction strength, which determines charge carrier effective mass, mobility, and the so‐called Mott polaron density, that is, the maximum stable density of charge carriers that a perovskite can support. Despite its significance, controlling polaron dimensions has been challenging. Here, experimental substantial tuning of polaron dimensions is reported by lattice engineering, through Pb/Sn substitution in CH3NH3SnxPb1−xI3. The polaron dimension is deduced from the Mott polaron density, which can be composition‐tuned over an order of magnitude, while charge carrier mobility occurs through band transport, and remains substantial across all compositions, ranging from 10 s to 100 s cm2 V s−1 at room temperature. The effective modulation of polaron size can be understood by considering the bond asymmetry after carrier injection as well as the random spatial distribution of Pb/Sn ions. This study underscores the potential for tailoring polaron dimensions, which is crucial for optimizing applications prioritizing either high charge carrier density or high mobility.

Funder

European Research Council

Fonds Wetenschappelijk Onderzoek

Alexander von Humboldt-Stiftung

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3