Light‐Driven Self‐Oscillation of Thermoplasmonic Nanocolloids

Author:

Mezzasalma Stefano A.12ORCID,Kruse Joscha3,Merkens Stefan4,Lopez Eneko4,Seifert Andreas45,Morandotti Roberto6,Grzelczak Marek3ORCID

Affiliation:

1. Laboratory of Optics and Optical Thin Films Materials Physics Division Ruđer Bošković Institute Bijeniška cesta 54 Zagreb 10000 Croatia

2. LINXS ‐ Institute for advanced Neutron and X‐ray Science Lund University Ideon Building, Delta 5 Scheelevägen 19 223 70 Lund Sweden

3. Centro de Física de Materiales (CSIC‐UPV/EHU) and Donostia International Physics Center (DIPC) Manuel Lardizabal Ibilbidea 5 Donostia‐San Sebastián 20018 Spain

4. CIC nanoGUNE BRTA Tolosa Hiribidea 76 Donostia‐Sebastián 20018 Spain

5. IKERBASQUE Basque Foundation for Science Bilbao 48009 Spain

6. Institut National de la Recherche Scientifique Centre Énergie Matériaux Télécommunications Varennes Québec J3X 1S2 Canada

Abstract

AbstractSelf‐oscillation—the periodic change of a system under a non‐periodic stimulus—is vital for creating low‐maintenance autonomous devices in soft robotics technologies. Soft composites of macroscopic dimensions are often doped with plasmonic nanoparticles to enhance energy dissipation and generate periodic response. However, while it is still unknown whether a dispersion of photonic nanocrystals may respond to light as a soft actuator, a dynamic analysis of nanocolloids self‐oscillating in a liquid is also lacking. This study presents a new self‐oscillator model for illuminated colloidal systems. It predicts that the surface temperature of thermoplasmonic nanoparticles and the number density of their clusters jointly oscillate at frequencies ranging from infrasonic to acoustic values. New experiments with spontaneously clustering gold nanorods, where the photothermal effect alters the interplay of light (stimulus) with the disperse system on a macroscopic scale, strongly support the theory. These findings enlarge the current view on self‐oscillation phenomena and anticipate the colloidal state of matter to be a suitable host for accommodating light‐propelled machineries. In broad terms, a complex system behavior is observed, which goes from periodic solutions (Hopf–Poincaré–Andronov bifurcation) to a new dynamic attractor driven by nanoparticle interactions, linking thermoplasmonics to nonlinearity and chaos.

Funder

Ministerio de Ciencia e Innovación

Eusko Jaurlaritza

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3