Field‐Effect Thermoelectric Hotspot in Monolayer Graphene Transistor

Author:

Lu Huihui12,Xue Huanyi34,Zeng Daobing12,Liu Guanyu1,Zhu Liping3,Tian Ziao1,Chu Paul K.5,Mei Yongfeng6,Zhang Miao1,An Zhenghua3ORCID,Di Zengfeng1

Affiliation:

1. State Key Laboratory of Materials for Integrated Circuits Shanghai Institute of Microsystem and Information Technology Chinese Academy of Sciences Shanghai 200050 China

2. University of Chinese Academy of Sciences Beijing 100049 China

3. State Key Laboratory of Surface Physics and Department of Physics Institute for Nanoelectronic Devices and Quantum Computing Fudan University Shanghai 200433 China

4. Westlake Institute for Optoelectronics Hangzhou 310024 China

5. Department of Physics Department of Materials Science and Engineering and Department of Biomedical Engineering City University of Hong Kong Tat Chee Avenue Kowloon Hong Kong 999077 China

6. Department of Materials Science Fudan University Shanghai 200433 China

Abstract

AbstractGraphene is a promising candidate for the thermal management of downscaled microelectronic devices owing to its exceptional electrical and thermal properties. Nevertheless, a comprehensive understanding of the intricate electrical and thermal interconversions at a nanoscale, particularly in field‐effect transistors with prevalent gate operations, remains elusive. In this study, nanothermometric imaging is used to examine a current‐carrying monolayer graphene channel sandwiched between hexagonal boron nitride dielectrics. It is revealed for the first time that beyond the expected Joule heating, the thermoelectric Peltier effect actively plays a significant role in generating hotspots beneath the gated region. With gate‐controlled charge redistribution and a shift in the Dirac point position, an unprecedented systematic evolution of thermoelectric hotspots, underscoring their remarkable tenability is demonstrated. This study reveals the field‐effect Peltier contribution in a single graphene‐material channel of transistors, offering valuable insights into field‐effect thermoelectrics and future on‐chip energy management.

Funder

National Natural Science Foundation of China

Science and Technology Commission of Shanghai Municipality

Training Program for Excellent Young Innovators of Changsha

National Key Research and Development Program of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3