A Photolithographable Electrolyte for Deeply Rechargeable Zn Microbatteries in On‐Chip Devices

Author:

Qu Zhe12,Ma Jiachen12,Huang Yang3,Li Tianming12,Tang Hongmei12,Wang Xiaoyu4,Liu Siyuan5,Zhang Kai5,Lu Jing6,Karnaushenko Dmitriy D.12,Karnaushenko Daniil12,Zhu Minshen12ORCID,Schmidt Oliver G.124

Affiliation:

1. Research Center for Materials Architectures and Integration of Nanomembranes (MAIN) TU Chemnitz 09126 Chemnitz Germany

2. Material Systems for Nanoelectronics TU Chemnitz 09107 Chemnitz Germany

3. Advanced Materials Thrust The Hong Kong University of Science and Technology (Guangzhou) Guanzhou 511400 China

4. School of Science TU Dresden 01062 Dresden Germany

5. Sustainable Materials and Chemistry Department of Wood Technology and Wood‐Based Composites University of Göttingen 37077 Göttingen Germany

6. State Key Laboratory for Mesoscopic Physics and Department of Physics Peking University Beijing 100871 China

Abstract

AbstractZn batteries show promise for microscale applications due to their compatibility with air fabrication but face challenges like dendrite growth and chemical corrosion, especially at the microscale. Despite previous attempts in electrolyte engineering, achieving successful patterning of electrolyte microscale devices has remained challenging. Here, successful patterning using photolithography is enabled by incorporating caffeine into a UV‐crosslinked polyacrylamide hydrogel electrolyte. Caffeine passivates the Zn anode, preventing chemical corrosion, while its coordination with Zn2+ ions forms a Zn2+‐conducting complex that transforms into ZnCO3 and 2ZnCO3·3Zn(OH)2 over cycling. The resulting Zn‐rich interphase product significantly enhances Zn reversibility. In on‐chip microbatteries, the resulting solid‐electrolyte interphase allows the Zn||MnO2 full cell to cycle for over 700 cycles with an 80% depth of discharge. Integrating the photolithographable electrolyte into multilayer microfabrication creates a microbattery with a 3D Swiss‐roll structure that occupies a footprint of 0.136 mm2. This tiny microbattery retains 75% of its capacity (350 µAh cm−2) for 200 cycles at a remarkable 90% depth of discharge. The findings offer a promising solution for enhancing the performance of Zn microbatteries, particularly for on‐chip microscale devices, and have significant implications for the advancement of autonomous microscale devices.

Funder

European Commission

Deutsche Forschungsgemeinschaft

China Scholarship Council

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3