Thermodynamically Stable Dual‐Modified LiF&FeF3 layer Empowering Ni‐Rich Cathodes with Superior Cyclabilities

Author:

Chu Youqi123,Mu Yongbiao123,Zou Lingfeng123,Hu Yan123,Cheng Jie4,Wu Buke123,Han Meisheng123,Xi Shibo5,Zhang Qing123,Zeng Lin123ORCID

Affiliation:

1. Shenzhen Key Laboratory of Advanced Energy Storage Southern University of Science and Technology Shenzhen 518055 P. R. China

2. Department of Mechanical and Energy Engineering Southern University of Science and Technology Shenzhen 518055 P. R. China

3. SUSTech Energy Institute for Carbon Neutrality Southern University of Science and Technology Shenzhen 518055 P. R. China

4. School of Science New Energy Technology Engineering Laboratory of Jiangsu Province Nanjing University of Posts and Telecommunications Nanjing Jiangsu 210023 P. R. China

5. Institute of Chemical and Engineering Sciences 1 Pesek Road, Jurong Island Singapore 627833 Singapore

Abstract

AbstractPushing the limit of cutoff potentials allows nickel‐rich layered oxides to provide greater energy density and specific capacity whereas reducing thermodynamic and kinetic stability. Herein, a one‐step dual‐modified method is proposed for in situ synthesizing thermodynamically stable LiF&FeF3 coating on LiNi0.8Co0.1Mn0.1O2 surfaces by capturing lithium impurity on the surface to overcome the challenges suffered. The thermodynamically stabilized LiF&FeF3 coating can effectively suppress the nanoscale structural degradation and the intergranular cracks. Meanwhile, the LiF&FeF3 coating alleviates the outward migration of Oα− (α<2), increases oxygen vacancy formation energies, and accelerates interfacial Li+ diffusion. Benefited from these, the electrochemical performance of LiF&FeF3 modified materials is improved (83.1% capacity retention after 1000 cycles at 1C), even under exertive operational conditions of elevated temperature (91.3% capacity retention after 150 cycles at 1C). This work demonstrates that the dual‐modified strategy can simultaneously address the problems of interfacial instability and bulk structural degradation and represents significant progress in developing high‐performance lithium‐ion batteries (LIBs).

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3