Labile Coordination Interphase for Regulating Lean Ion Dynamics in Reversible Zn Batteries

Author:

Wang Chenxiang1,Zhu Jason Zi Jie1,Vi‐Tang Samantha1,Peng Bosi1,Ni Chenhao2,Li Qizhou3,Chang Xueying1,Huang Ailun1,Yang Zhiyin1,Savage Ethan J.1,Uemura Sophia1,Katsuyama Yuto1,El‐Kady Maher F.1,Kaner Richard B.14ORCID

Affiliation:

1. Department of Chemistry and Biochemistry and California NanoSystems Institute University of California Los Angeles CA 90095 USA

2. School of Physics and Technology Wuhan University Wuhan 430072 China

3. Department of Chemical Engineering and Materials Science University of Southern California CA 90089 USA

4. Department of Materials Science and Engineering and California NanoSystems Institute University of California Los Angeles CA 90095 USA

Abstract

AbstractRechargeability in zinc (Zn) batteries is limited by anode irreversibility. The practical lean electrolytes exacerbate the issue, compromising the cost benefits of zinc batteries for large‐scale energy storage. In this study, a zinc‐coordinated interphase is developed to avoid chemical corrosion and stabilize zinc anodes. The interphase promotes Zn2+ ions to selectively bind with histidine and carboxylate ligands, creating a coordination environment with high affinity and fast diffusion due to thermodynamic stability and kinetic lability. Experiments and simulations indicate that interphase regulates dendrite‐free electrodeposition and reduces side reactions. Implementing such labile coordination interphase results in increased cycling at 20 mA cm−2 and high reversibility of dendrite‐free zinc plating/stripping for over 200 hours. A Zn||LiMn2O4 cell with 74.7 mWh g−1 energy density and 99.7% Coulombic efficiency after 500 cycles realized enhanced reversibility using the labile coordination interphase. A lean‐electrolyte full cell using only 10 µL mAh−1 electrolyte is also demonstrated with an elongated lifespan of 100 cycles, five times longer than bare Zn anodes. The cell offers a higher energy density than most existing aqueous batteries. This study presents a proof‐of‐concept design for low‐electrolyte, high‐energy‐density batteries by modulating coordination interphases on Zn anodes.

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3