Drycells: Cell‐Suspension Micro Liquid Marbles for Single‐Cell Picking

Author:

Tenjimbayashi Mizuki1ORCID,Yamamoto Shota2ORCID,Uto Koichiro2ORCID

Affiliation:

1. Research Center for Materials Nanoarchitectonics (MANA) National Institute for Materials Science (NIMS) 1‐1 Namiki Tsukuba Ibaraki 305‐0044 Japan

2. Research Center for Macromolecules and Biomaterials National Institute for Materials Science (NIMS) 1‐1 Namiki Tsukuba Ibaraki 305‐0044 Japan

Abstract

AbstractCell‐picking technology is essential for cell culturing. Although the recently developed tools enable single‐cell‐level picking, they rely on special skills or additional devices. In this work, a dry powder that encapsulates single to several cells with a >95% aqueous culture medium, thereby acting as a powerful cell‐picking tool, is reported. The proposed “drycells” are formed by spraying a cell suspension onto a powder bed of hydrophobic fumed silica nanoparticles. The particles adsorb to the droplet surface and form a superhydrophobic shell, which prevents the drycells from coalescence. The number of encapsulated cells per drycell can be controlled by adjusting the drycell size and cell‐suspension concentration. Moreover, it is possible to encapsulate a pair of normal or cancerous cells and create several cell colonies within a single drycell. A sieving process can be used to sort the drycells according to size. The size of the droplet can range from one to hundreds of micrometers. The drycells are sufficiently stiff to be collected using tweezers; however, centrifugation separates them into nanoparticles and cell‐suspension layers, with the separated particles being recyclable. Various handling techniques, such as splitting coalescence and inner liquid replacement, can be used. It is believed that the application of the proposed drycells will greatly improve the accessibility and productivity of single‐cell analysis.

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3