4D‐Printed Soft and Stretchable Self‐Folding Cuff Electrodes for Small‐Nerve Interfacing

Author:

Hiendlmeier Lukas12ORCID,Zurita Francisco12ORCID,Vogel Jonas1ORCID,Del Duca Fulvia12ORCID,Al Boustani George12ORCID,Peng Hu1ORCID,Kopic Inola1ORCID,Nikić Marta1ORCID,F. Teshima Tetsuhiko12ORCID,Wolfrum Bernhard12ORCID

Affiliation:

1. Neuroelectronics Munich Institute of Biomedical Engineering School of Computation, Informatics and Technology Technical University of Munich Hans‐Piloty‐Str. 1 85748 Garching Germany

2. Medical & Health Informatics Laboratories NTT Research Incorporated 940 Stewart Dr Sunnyvale CA 94085 USA

Abstract

AbstractPeripheral nerve interfacing (PNI) has a high clinical potential for treating various diseases, such as obesity or diabetes. However, currently existing electrodes present challenges to the interfacing procedure, which limit their clinical application, in particular, when targeting small peripheral nerves (<200 µm). To improve the electrode handling and implantation, a nerve interface that can fold itself to a cuff around a small nerve, triggered by the body moisture during insertion, is fabricated. This folding is achieved by printing a bilayer of a flexible polyurethane printing resin and a highly swelling sodium acrylate hydrogel using photopolymerization. When immersed in an aqueous liquid, the hydrogel swells and folds the electrode softly around the nerve. Furthermore, the electrodes are robust, can be stretched (>20%), and bent to facilitate the implantation due to the use of soft and stretchable printing resins as substrates and a microcracked gold film as conductive layer. The straightforward implantation and extraction of the electrode as well as stimulation and recording capabilities on a small peripheral nerve in vivo are demonstrated. It is believed that such simple and robust to use self‐folding electrodes will pave the way for bringing PNI to a broader clinical application.

Funder

Bundesministerium für Bildung und Forschung

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3