Realizing Photocatalytic Overall Water Splitting by Modulating the Thickness‐Induced Reaction Energy Barrier of Fluorenone‐Based Covalent Organic Frameworks

Author:

Shen Rongchen1,Qin Chaochao2,Hao Lei1,Li Xiuzhi2,Zhang Peng3,Li Xin1ORCID

Affiliation:

1. Institute of Biomass Engineering Key Laboratory of Energy Plants Resource and Utilization Ministry of Agriculture and Rural Affairs South China Agricultural University Guangzhou 510642 China

2. Henan Key Laboratory of Infrared Materials and Spectrum Measures and Applications School of Physics Henan Normal University Xinxiang Henan 453007 China

3. State Centre for International Cooperation on Designer Low‐Carbon & Environmental Materials (CDLCEM) School of Materials Science and Engineering Zhengzhou University Zhengzhou Henan 450001 P. R. China

Abstract

AbstractDirect photocatalytic hydrogen and oxygen evolution from water splitting is an attractive approach for producing chemical fuels. In this work, a novel fluorenone‐based covalent organic framework (COF‐SCAU‐2) is successfully exfoliated into ultrathin three‐layer nanosheets (UCOF‐SCAU‐2) for photocatalytic overall water splitting (OWS) under visible light. The ultrathin structures of UCOF‐SCAU‐2 greatly enhance carrier separation, utilization efficiency, and the exposure of active surface sites. Surprisingly, UCOF‐SCAU‐2 exhibits efficient photocatalytic OWS performance, with hydrogen and oxygen evolution rates reaching 0.046 and 0.021 mmol h−1 g−1, respectively, under visible‐light irradiation, whereas bulk COF‐SCAU‐2 shows no activity for photocatalytic OWS. Charge‐carrier kinetic analysis and DFT calculations confirm that reducing the thickness of the COF nanosheets increases the number of accessible active sites, reduces the distance for charge migration, prolongs the lifetimes of photogenerated carriers, and decreases the Gibbs free energy of the rate‐limiting step compared to nonexfoliated COFs. This work offers new insights into the effect of the layer thickness of COFs on photocatalytic OWS.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3