Conversion of Surface Residual Alkali to Solid Electrolyte to Enable Na‐Ion Full Cells with Robust Interfaces

Author:

Xu Weiliang12,Dang Rongbin1,Zhou Lin13,Yang Yang14,Lin Ting1,Guo Qiubo1,Xie Fei1,Hu Zilin14,Ding Feixiang13,Liu Yunpeng5,Liu Yuan14,Mao Huican1,Hong Juan2,Zuo Zhanchun1,Wang Xiaoqi6,Yang Rui6,Jin Xu6,Hou Xueyan1,Lu Yaxiang13,Rong Xiaohui13,Xu Ning2,Hu Yong‐Sheng1234ORCID

Affiliation:

1. Beijing National Laboratory for Condensed Matter Physics Institute of Physics Chinese Academy of Sciences Beijing 100190 P. R. China

2. College of Mechanical Engineering Yancheng Institute of Technology Yancheng Jiangsu 224051 P. R. China

3. Huairou Division Institute of Physics Chinese Academy of Sciences Beijing 101400 P. R. China

4. College of Materials Science and Optoelectronic Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China

5. Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 P. R. China

6. Research Center of New Energy PetroChina Research Institute of Petroleum Exploration & Development Beijing 100083 P. R. China

Abstract

AbstractThe deposition of volatilized Na+ on the surface of the cathode during sintering results in the formation of surface residual alkali (NaOH/Na2CO3NaHCO3) in layered cathode materials, leading to serious interfacial reactions and performance degradation. This phenomenon is particularly evident in O3‐NaNi0.4Cu0.1Mn0.4Ti0.1O2 (NCMT). In this study, a strategy is proposed to transform waste into treasure by converting residual alkali into a solid electrolyte. Mg(CH3COO)2 and H3PO4 are reacted with surface residual alkali to generate the solid electrolyte NaMgPO4 on the surface of NCMT, which can be labeled as NaMgPO4@NaNi0.4Cu0.1Mn0.4Ti0.1O2X (NMP@NCMT‐X, where X indicates the different amounts of Mg2+ and PO43−). NaMgPO4 acts as a special ionic conductivity channel on the surface to improve the kinetics of the electrode reactions, remarkably improving the rate capability of the modified cathode at a high current density in the half‐cell. Additionally, NMP@NCMT‐2 enables a reversible phase transition from the P3 to OP2 phase in the charge–discharge process above 4.2 V and achieves a high specific capacity of 157.3 mAh g−1 and outstanding capacity retention in the full cell. The strategy can effectively and reliably stabilize the interface and improve the performance of layered cathodes for Na‐ion batteries (NIBs).

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3