Affiliation:
1. School of Physics University of Melbourne Parkville Victoria 3010 Australia
2. CUNY‐The City College of New York New York 10031 USA
3. School of Science RMIT University Melbourne Victoria 3000 Australia
4. CUNY ‐ The Graduate Center New York NY 10016 USA
Abstract
AbstractEstablishing connections between material impurities and charge transport properties in emerging electronic and quantum materials, such as wide‐bandgap semiconductors, demands new diagnostic methods tailored to these unique systems. Many such materials host optically‐active defect centers which offer a powerful in situ characterization system, but one that typically relies on the weak spin‐electric field coupling to measure electronic phenomena. In this work, charge‐state sensitive optical microscopy is combined with photoelectric detection of an array of nitrogen‐vacancy (NV) centers to directly image the flow of charge carriers inside a diamond optoelectronic device, in 3D and with temporal resolution. Optical control is used to change the charge state of background impurities inside the diamond on‐demand, resulting in drastically different current flow such as filamentary channels nucleating from specific, defective regions of the device. Conducting channels that control carrier flow, key steps toward optically reconfigurable, wide‐bandgap optoelectronics are then engineered using light. This work might be extended to probe other wide‐bandgap semiconductors (SiC, GaN) relevant to present and emerging electronic and quantum technologies.
Funder
Australian Research Council
National Science Foundation
U.S. Department of Energy