In Situ Engineering of Inorganic‐Rich Solid Electrolyte Interphases via Anion Choice Enables Stable, Lithium Anodes

Author:

Weeks Jason A.1ORCID,Burrow James N.2ORCID,Diao Jiefeng13ORCID,Paul‐Orecchio Austin G.1,Srinivasan Hrishikesh S.2ORCID,Vaidyula Rinish Reddy1,Dolocan Andrei4ORCID,Henkelman Graeme13ORCID,Mullins C. Buddie124ORCID

Affiliation:

1. Department of Chemistry The University of Texas at Austin Austin TX 78712‐1224 USA

2. John J. McKetta Department of Chemical Engineering The University of Texas at Austin Austin TX 78712‐1589 USA

3. Oden Institute for Computational Engineering and Sciences The University of Texas at Austin Austin TX 78712 USA

4. Texas Materials Institute The University of Texas at Austin Austin TX 78712‐1591 USA

Abstract

AbstractThe discovery of liquid battery electrolytes that facilitate the formation of stable solid electrolyte interphases (SEIs) to mitigate dendrite formation is imperative to enable lithium anodes in next‐generation energy‐dense batteries. Compared to traditional electrolyte solvents, tetrahydrofuran (THF)‐based electrolyte systems have demonstrated great success in enabling high‐stability lithium anodes by encouraging the decomposition of anions (instead of organic solvent) and thus generating inorganic‐rich SEIs. Herein, by employing a variety of different lithium salts (i.e., LiPF6, LiTFSI, LiFSI, and LiDFOB), it is demonstrated that electrolyte anions modulate the inorganic composition and resulting properties of the SEI. Through novel analytical time‐of‐flight secondary‐ion mass spectrometry methods, such as hierarchical clustering of depth profiles and compositional analysis using integrated yields, the chemical composition and morphology of the SEIs generated from each electrolyte system are examined. Notably, the LiDFOB electrolyte provides an exceptionally stable system to enable lithium anodes, delivering >1500 cycles at a current density of 0.5 mAh g−1 and a capacity of 0.5 mAh g−1 in symmetrical cells. Furthermore, Li//LFP cells using this electrolyte demonstrate high‐rate, reversible lithium storage, supplying 139 mAh g(LFP)−1 at C/2 (≈0.991 mAh cm−2, @ 0.61 mA cm−2) with 87.5% capacity retention over 300 cycles (average Coulombic efficiency >99.86%).

Funder

Welch Foundation

National Science Foundation

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3