Affiliation:
1. School of Physical Science and Technology ShanghaiTech University Shanghai 201210 China
2. State Key Laboratory of Functional Materials for Informatics Shanghai Institute of Microsystem and Information Technology Chinese Academy of Sciences Shanghai 200050 China
3. College of Chemistry and Environmental Engineering Shenzhen University Shenzhen Guangdong 518060 China
Abstract
AbstractAccurate structure control in dissipative assemblies (DSAs) is vital for precise biological functions. However, accuracy and functionality of artificial DSAs are far from this objective. Herein, a novel approach is introduced by harnessing complex chemical reaction networks rooted in coordination chemistry to create atomically‐precise copper nanoclusters (CuNCs), specifically Cu11(µ9‐Cl)(µ3‐Cl)3L6Cl (L = 4‐methyl‐piperazine‐1‐carbodithioate). Cu(I)–ligand ratio change and dynamic Cu(I)–Cu(I) metallophilic/coordination interactions enable the reorganization of CuNCs into metastable CuL2, finally converting into equilibrium [CuL·Y]Cl (Y = MeCN/H2O) via Cu(I) oxidation/reorganization and ligand exchange process. Upon adding ascorbic acid (AA), the system goes further dissipative cycles. It is observed that the encapsulated/bridging halide ions exert subtle influence on the optical properties of CuNCs and topological changes of polymeric networks when integrating CuNCs as crosslink sites. CuNCs duration/switch period could be controlled by varying the ions, AA concentration, O2 pressure and pH. Cu(I)‐Cu(I) metallophilic and coordination interactions provide a versatile toolbox for designing delicate life‐like materials, paving the way for DSAs with precise structures and functionalities. Furthermore, CuNCs can be employed as modular units within polymers for materials mechanics or functionalization studies.
Funder
National Natural Science Foundation of China
ShanghaiTech University
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献