Confinement Engineering of Zinc Single‐Atom Triggered Charge Redistribution on Ruthenium Site for Alkaline Hydrogen Production

Author:

Wan Yinji1,Chen Weibin2,Wu Shengqiang2,Gao Song2,Xiong Feng2,Guo Wenhan3,Feng Long1,Cai Kunting2,Zheng Lirong4,Wang Yonggang2,Zhong Ruiqin1,Zou Ruqiang2ORCID

Affiliation:

1. State Key Laboratory of Heavy Oil Processing China University of Petroleum, Beijing No. 18 Fuxue Road, Changping District Beijing 102249 China

2. Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials School of Materials Science and Engineering Peking University No. 5 Yiheyuan Road, Haidian District Beijing 100871 China

3. School of Physical Sciences Great Bay University Dongguan Guangdong Province 523000 China

4. Beijing Synchrotron Radiation Facility Institute of High Energy Physics Chinese Academy of Sciences No. 19 Yuquan Road Beijing 100049 China

Abstract

AbstractOptimizing the interaction between metal and support in the supported metal catalysts effectively refines the electronic structure and boosts the catalytic properties of loaded active components. Herein a method is introduced to confine ultrafine ruthenium (Ru) nanoparticles within atomically dispersed Zn‐N4 sites on a N‐doped carbon network (Ru/Zn‐N‐C) through the strong electronic metal–support interaction, achieving superior catalytic activity and stability for alkaline hydrogen evolution. Spectroscopic data and theoretical modeling elucidate that the remarkable catalytic performance of Ru sites stems from their strong electronic coupling with neighboring Zn‐N4 moiety and pyridinic N/pyrrolic N. This interaction induces an electron‐deficient state of Ru, thereby accelerating the dissociation of H2O and lowering the energy barriers for the desorption of OH* and H*. This insight provides a deeper understanding of the catalytic mechanisms at play. Furthermore, alkaline water electrolyzer using this catalyst as cathode delivers a mass activity of 3 A mgcat–1 at 2.0 V, much surpassing Ru‐C. This research opens a novel pathway for the development of advanced materials , tailored for energy storage and conversion applications.

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3