Multi‐Scale Structure Engineering of ZnSnO3 for Ultra‐Long‐Life Aqueous Zinc‐Metal Batteries

Author:

Ling Fangxin1,Wang Lifeng1,Liu Fanfan1,Ma Mingze1,Zhang Shipeng2,Rui Xianhong3,Shao Yu4,Yang Yaxiong5,He Shengnan5,Pan Hongge5,Wu Xiaojun1,Yao Yu1,Yu Yan16ORCID

Affiliation:

1. Hefei National Research Center for Physical Sciences at the Microscale iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) Department of Materials Science and Engineering CAS Key Laboratory of Materials for Energy Conversion University of Science and Technology of China Hefei Anhui 230026 China

2. School of Materials Science and Engineering Peking University Beijing 100871 China

3. School of Materials and Energy Guangdong University of Technology Guangzhou 510006 China

4. Jiujiang DeFu Technology Co., LTD. Jiujiang Jiangxi 332000 China

5. Institute of Science and Technology for New Energy Xi'an Technological University Xi'an 710021 China

6. National Synchrotron Radiation Laboratory Hefei Anhui 230026 China

Abstract

AbstractSuppressing the severe water‐induced side reactions and uncontrolled dendrite growth of zinc (Zn) metal anodes is crucial for aqueous Zn‐metal batteries to achieve ultra‐long cyclic lifespans and promote their practical applications. Herein, a concept of multi‐scale (electronic‐crystal‐geometric) structure design is proposed to precisely construct the hollow amorphous ZnSnO3 cubes (HZTO) for optimizing Zn metal anodes. In situ gas chromatography demonstrates that Zn anodes modified by HZTO (HZTO@Zn) can effectively inhibit the undesired hydrogen evolution. The pH stabilization and corrosion suppression mechanisms are revealed via operando pH detection and in situ Raman analysis. Moreover, comprehensive experimental and theoretical results prove that the amorphous structure and hollow architecture endow the protective HZTO layer with strong Zn affinity and rapid Zn2+ diffusion, which are beneficial for achieving the ideal dendrite‐free Zn anode. Accordingly, excellent electrochemical performances for the HZTO@Zn symmetric battery (6900 h at 2 mA cm−2, 100 times longer than that of bare Zn), HZTO@Zn||V2O5 full battery (99.3% capacity retention after 1100 cycles), and HZTO@Zn||V2O5 pouch cell (120.6 Wh kg−1 at 1 A g−1) are achieved. This work with multi‐scale structure design provides significant guidance to rationally develop advanced protective layers for other ultra‐long‐life metal batteries.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

National Synchrotron Radiation Laboratory

Dalian National Laboratory for Clean Energy

National Postdoctoral Program for Innovative Talents

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3