Open‐Shell Diradical‐Sensitized Electron Transport Layer for High‐Performance Colloidal Quantum Dot Solar Cells

Author:

Fang Shiwen12,Huang Jiaxing3,Tao Ran1,Wei Qi3,Ding Xiaobo1,Yajima Shota4,Chen Zhongxin3,Zhu Weiya3,Liu Cheng1,Li Yusheng4,Yin Ni5,Song Leliang1,Liu Yang1,Shi Guozheng1,Wu Hao1,Gao Yiyuan1,Wen Xin1,Chen Qi5,Shen Qing4,Li Youyong1,Liu Zeke12ORCID,Li Yuan3ORCID,Ma Wanli12ORCID

Affiliation:

1. Jiangsu Key Laboratory for Carbon‐Based Functional Materials & Devices Institute of Functional Nano & Soft Materials (FUNSOM) Joint International Research Laboratory of Carbon‐Based Functional Materials and Devices Soochow University 199 Ren'ai Road Suzhou Jiangsu 215123 China

2. Jiangsu Key Laboratory of Advanced Negative Carbon Technologies Soochow University Suzhou Jiangsu 215123 P. R. China

3. Institute of Polymer Optoelectronic Materials and Devices State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 P. R. China

4. Faculty of Informatics and Engineering The University of Electro‐Communications 1‐5‐1 Chofugaoka Chofu Tokyo 182–8585 Japan

5. i‐Lab CAS Key Laboratory of Nanophotonic Materials and Devices Suzhou Institute of Nano‐Tech and Nano‐Bionics Suzhou 215123 China

Abstract

AbstractThe zinc oxide (ZnO) nanoparticles (NPs) are well‐documented as an excellent electron transport layer (ETL) in optoelectronic devices. However, the intrinsic surface flaw of the ZnO NPs can easily result in serious surface recombination of carriers. Exploring effective passivation methods of ZnO NPs is essential to maximize the device's performance. Herein, a hybrid strategy is explored for the first time to improve the quality of ZnO ETL by incorporating stable organic open‐shell donor‐acceptor type diradicaloids. The high electron‐donating feature of the diradical molecules can efficiently passivate the deep‐level trap states and improve the conductivity of ZnO NP film. The unique advantage of the radical strategy is that its passivation effectiveness is highly correlated with the electron‐donating ability of radical molecules, which can be precisely controlled by the rational design of molecular chemical structures. The well‐passivated ZnO ETL is applied in lead sulfide (PbS) colloidal quantum dot solar cells, delivering a power conversion efficiency of 13.54%. More importantly, as a proof‐of‐concept study, this work will inspire the exploration of general strategies using radical molecules to construct high‐efficiency solution‐processed optoelectronic devices.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Jianghan University

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3