Tailoring the d‐Orbital Splitting Manner of Single Atomic Sites for Enhanced Oxygen Reduction

Author:

Dai Yunkun1ORCID,Liu Bo1,Zhang Ziyu1,Guo Pan1,Liu Chang2,Zhang Yunlong1,Zhao Lei1,Wang Zhenbo12ORCID

Affiliation:

1. MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage State Key Lab of Urban Water Resource and Environment School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 P. R. China

2. College of Materials Science and Engineering Shenzhen University Shenzhen Guangdong 518071 P. R. China

Abstract

AbstractRegulating the electronic states of single atomic sites around the Fermi level remains a major concern for boosting the electrocatalytic oxygen reduction reaction (ORR). Herein, a Fe d‐orbital splitting manner modulation strategy by constructing axial coordination on FeN4 sites is presented. Experimental investigations and theoretical calculations reveal that the axial tractions induce the distortion of square‐planar field (FeN4 SP), up to the quasi‐octahedral coordination (FeN4O1 OCquasi), thus leading to the electron rearrangement with a diluted spin polarization. The declined population of unpaired electrons in dz2, dxz and dyz states engenders a moderate adsorption of ORR intermediates, thereby reinforcing the intrinsic reaction activity. In situ infrared spectroscopy further demonstrates that the reordering of d‐orbital splitting and occupation facilitates the desorption of *OH. The FeN4O1 OCquasi exhibits a dramatic improvement of kinetic current density and turnover frequency, which are fivefold and tenfold higher than those of FeN4 SP. This work presents a novel understanding on improving the electrocatalytic performance through the orbital‐scale manipulation.

Funder

National Natural Science Foundation of China

Key Technology Research and Development Program of Shandong

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3