Wafer‐Scale Epitaxial Growth of Two‐dimensional Organic Semiconductor Single Crystals toward High‐Performance Transistors

Author:

Wang Jinwen1,Ren Zheng1,Pan Jing1,Wu Xiaofeng1,Jie Jiansheng12ORCID,Zhang Xiaohong1,Zhang Xiujuan1

Affiliation:

1. Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon‐Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China

2. Macao Institute of Materials Science and Engineering MUST‐SUDA Joint Research Center for Advanced Functional Materials Macau University of Science and Technology Taipa Macau 999078 P. R. China

Abstract

AbstractThe success of state‐of‐the‐art electronics and optoelectronics relies heavily on the capability to fabricate semiconductor single‐crystal wafers. However, the conventional epitaxial growth strategy for inorganic wafers is invalid for growing organic semiconductor single crystals due to the lack of lattice‐matched epitaxial substrates and intricate nucleation behaviors, severely impeding the advancement of organic single‐crystal electronics. Here, an anchored crystal‐seed epitaxial growth method for wafer‐scale growth of 2D organic semiconductor single crystals is developed for the first time. The crystal seed is firmly anchored on the viscous liquid surface, ensuring the steady epitaxial growth of organic single crystals from the crystal seed. The atomically flat liquid surface effectively eliminates the disturbance from substrate defects and greatly enhances the 2D growth of organic crystals. Using this approach, a wafer‐scale few‐layer bis(triethylsilythynyl)‐anthradithphene (Dif‐TES‐ADT) single crystal is formed, yielding a breakthrough for organic field‐effect transistors with a high reliable mobility up to 8.6 cm2 V−1 s−1 and an ultralow mobility variable coefficient of 8.9%. This work opens a new avenue to fabricate organic single‐crystal wafers for high‐performance organic electronics.

Funder

National Natural Science Foundation of China

Postdoctoral Research Foundation of China

Higher Education Discipline Innovation Project

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3