Understanding the Electrical Mechanisms in Aqueous Zinc Metal Batteries: From Electrostatic Interactions to Electric Field Regulation

Author:

Xu Jing1,Li Haolin1,Jin Yang1,Zhou Dong2,Sun Bing3ORCID,Armand Michel4,Wang Guoxiu3ORCID

Affiliation:

1. Research Center of Grid Energy Storage and Battery Application School of Electrical Engineering Zhengzhou University Zhengzhou 450001 China

2. Tsinghua Shenzhen International Graduate School Tsinghua University Shenzhen 518055 China

3. Centre for Clean Energy Technology School of Mathematical and Physical Sciences Faculty of Science University of Technology Sydney Ultimo New South Wales 2007 Australia

4. Centre for Cooperative Research on Alternative Energies (CIC energiGUNE) Basque Research and Technology Alliance (BRTA) Alava Technology Park, Albert Einstein 48 Vitoria‐Gasteiz 01510 Spain

Abstract

AbstractAqueous Zn metal batteries are considered as competitive candidates for next‐generation energy storage systems due to their excellent safety, low cost, and environmental friendliness. However, the inevitable dendrite growth, severe hydrogen evolution, surface passivation, and sluggish reaction kinetics of Zn metal anodes hinder the practical application of Zn metal batteries. Detailed summaries and prospects have been reported focusing on the research progress and challenges of Zn metal anodes, including electrolyte engineering, electrode structure design, and surface modification. However, the essential electrical mechanisms that significantly influence Zn2+ ions migration and deposition behaviors have not been reviewed yet. Herein, in this review, the regulation mechanisms of electrical‐related electrostatic repulsive/attractive interactions on Zn2+ ions migration, desolvation, and deposition behaviors are systematically discussed. Meanwhile, electric field regulation strategies to promote the Zn2+ ions diffusion and uniform Zn deposition are comprehensively reviewed, including enhancing and homogenizing electric field intensity inside the batteries and adding external magnetic/pressure/thermal field to couple with the electric field. Finally, future perspectives on the research directions of the electrical‐related strategies for building better Zn metal batteries in practical applications are offered.

Funder

Australian Research Council

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3